·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬${S}_{n}=\frac{1}{3}{n}^{2}+\frac{2}{3}n$£¬£¨n¡ÊN*£©£®ÓÉan=Sn-Sn-1Çó³ön¡Ý2ʱµÄͨÏʽ£¬ÒÑÖªn=1³ÉÁ¢µÃÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÓÉbn=anan+1cos[£¨n+1£©¦Ð]=£¨-1£©n-1anan+1£¬µÃTn=b1+b2+¡+bn=a1a2-a2a3+a3a4-a4a5+¡+£¨-1£©n-1anan+1£®½áºÏ£¨¢ñ£©·Ön=2m£¨m¡ÊN*£©ºÍn=2m-1£¨m¡ÊN*£©Çó³öÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÓÉTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬·ÖÀë²ÎÊýt¿ÉµÃʵÊýtµÄȡֵ·¶Î§£»
£¨¢ó£©ÓÉ${a_n}=\frac{2n+1}{3}$ÖªÊýÁÐ{an}ÖÐÿһÏî¶¼²»¿ÉÄÜÊÇżÊý£®Èç´æÔÚÒÔa1ΪÊ×Ï¹«±ÈqΪ2»ò4µÄÊýÁÐ$\{{a_{n_k}}\}$£¨k¡ÊN*£©£¬´Ëʱ{a${\;}_{{n}_{k}}$}ÖÐÿһÏî³ýµÚÒ»ÏîÍâ¶¼ÊÇżÊý£¬
¹Ê²»´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪżÊýµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=1ʱ£¬ÏÔÈ»²»´æÔÚÕâÑùµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=3ʱ£¬Èô´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪ3µÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¨k¡ÊN*£©£¬Ôò${a}_{{n}_{1}}=1$£¨n1=1£©£¬Óɴ˿ɵÃ${a}_{{n}_{k}}={3}^{k-1}=\frac{2{n}_{k}+1}{3}$£¬${n}_{k}=\frac{{3}^{k}-1}{2}$£¬¼´´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¬ÇÒ${n}_{k}=\frac{{3}^{k}-1}{2}$£¨k¡ÊN*£©£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬${S}_{n}=\frac{1}{3}{n}^{2}+\frac{2}{3}n$£¬£¨n¡ÊN*£©£®
µ±n¡Ý2ʱ£¬${a}_{n}={S}_{n}-{S}_{n-1}=\frac{1}{3}{n}^{2}+\frac{2}{3}n-$$[\frac{1}{3}£¨n-1£©^{2}+\frac{2}{3}£¨n-1£©]$=$\frac{2n+1}{3}$£»
µ±n=1ʱ£¬a1=S1=1ÊʺÏÉÏʽ£®
ÊýÁÐ{an}µÄͨÏʽΪ${a}_{n}=\frac{2n+1}{3}$£¨n¡ÊN*£©£»
£¨¢ò£©¡ßbn=anan+1cos[£¨n+1£©¦Ð]=£¨-1£©n-1anan+1£¬
¡àTn=b1+b2+¡+bn=a1a2-a2a3+a3a4-a4a5+¡+£¨-1£©n-1anan+1£®
ÓÉ£¨¢ñ£©¿ÉÖª£¬ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«²îΪ$\frac{2}{3}$µÄµÈ²îÊýÁУ®
¢Ùµ±n=2m£¨m¡ÊN*£©Ê±£¬${T_n}={T_{2m}}={a_1}{a_2}-{a_2}{a_3}+{a_3}{a_4}-{a_4}{a_5}+¡+{£¨-1£©^{2m-1}}{a_{2m}}{a_{2m+1}}$
=a2£¨a1-a3£©+a4£¨a3-a5£©+¡+a2m£¨a2m-1-a2m+1£©=$-\frac{4}{3}£¨{a_2}+{a_4}+¡+{a_{2m}}£©=-\frac{4}{3}¡Á\frac{{{a_2}+{a_{2m}}}}{2}¡Ám$
=$-\frac{1}{9}£¨8{m^2}+12m£©=-\frac{1}{9}£¨2{n^2}+6n£©$£»
¢Úµ±n=2m-1£¨m¡ÊN*£©Ê±£¬${T_n}={T_{2m-1}}={T_{2m}}-{£¨-1£©^{2m-1}}{a_{2m}}{a_{2m+1}}$
=$-\frac{1}{9}£¨8{m^2}+12m£©+\frac{1}{9}£¨16{m^2}+16m+3£©$=$\frac{1}{9}£¨8{m^2}+4m+3£©=\frac{1}{9}£¨2{n^2}+6n+7£©$£®
¡à${T_n}=\left\{\begin{array}{l}-\frac{1}{9}£¨2{n^2}+6n£©£¬nΪżÊý\\ \frac{1}{9}£¨2{n^2}+6n+7£©£¬nÎªÆæÊý\end{array}\right.$£®
ҪʹTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬Ö»ÒªÊ¹$-\frac{1}{9}£¨2{n^2}+6n£©¡Ýt{n^2}$£¨nΪÕýżÊý£©ºã³ÉÁ¢£¬¼´Ê¹$-\frac{1}{9}£¨2+\frac{6}{n}£©¡Ýt$¶ÔnΪÕýżÊýºã³ÉÁ¢£¬
¡àt$¡Ü-\frac{5}{9}$£®
¹ÊʵÊýtµÄȡֵ·¶Î§ÊÇ$£¨-¡Þ£¬-\frac{5}{9}]$£»
£¨¢ó£©ÓÉ${a_n}=\frac{2n+1}{3}$ÖªÊýÁÐ{an}ÖÐÿһÏî¶¼²»¿ÉÄÜÊÇżÊý£®
¢ÙÈç´æÔÚÒÔa1ΪÊ×Ï¹«±ÈqΪ2»ò4µÄÊýÁÐ$\{{a_{n_k}}\}$£¨k¡ÊN*£©£¬´Ëʱ{a${\;}_{{n}_{k}}$}ÖÐÿһÏî³ýµÚÒ»ÏîÍâ¶¼ÊÇżÊý£¬
¹Ê²»´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪżÊýµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»
¢Úµ±q=1ʱ£¬ÏÔÈ»²»´æÔÚÕâÑùµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=3ʱ£¬Èô´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪ3µÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¨k¡ÊN*£©£¬Ôò${a}_{{n}_{1}}=1$£¨n1=1£©£¬
${a}_{{n}_{k}}={3}^{k-1}=\frac{2{n}_{k}+1}{3}$£¬${n}_{k}=\frac{{3}^{k}-1}{2}$£¬¼´´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¬ÇÒ${n}_{k}=\frac{{3}^{k}-1}{2}$£¨k¡ÊN*£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁкͺ¯ÊýµÄÓ¦Ó㬸ù¾ÝÌõ¼þÍÆ³öÊýÁеĵÝÍÆ¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®¿¼²éÊýÁеķÖÀàÇóºÍ£¬¿¼²éÂ߼˼άÄÜÁ¦ÓëÍÆÀíÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 20¦Ð | B£® | 16¦Ð | C£® | 15¦Ð | D£® | 12¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù¢Ü | B£® | ¢Ú¢Û | C£® | ¢Ù¢Û | D£® | ¢Ú¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-$\frac{1}{3}$£¬+¡Þ£© | B£® | £¨-$\frac{1}{3}$£¬1£© | C£® | £¨-$\frac{1}{3}$£¬$\frac{1}{3}$£© | D£® | £¨-¡Þ£¬-$\frac{1}{3}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com