7£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=$\frac{1}{3}$x2+$\frac{2}{3}$x£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã£¨n£¬Sn£©£¨n¡ÊN*£©ÔÚ¶þ´Îº¯Êýy=f£¨x£©µÄͼÏóÉÏ£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=anan+1cos[£¨n+1£©¦Ð]£¨n¡ÊN*£©£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÈôTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÕâÑùһЩÏa${\;}_{{n}_{1}}$£¬a${\;}_{{n}_{2}}$£¬a${\;}_{{n}_{3}}$£¬¡­£¬a${\;}_{{n}_{k}}$ÕâЩÏî¶¼Äܹ»
¹¹³ÉÒÔa1ΪÊ×Ïq£¨0£¼q£¼5£©Îª¹«±ÈµÄµÈ±ÈÊýÁÐ{a${\;}_{{n}_{k}}$}£¿Èô´æÔÚ£¬Ð´³önk¹ØÓÚf£¨x£©µÄ±í´ïʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬${S}_{n}=\frac{1}{3}{n}^{2}+\frac{2}{3}n$£¬£¨n¡ÊN*£©£®ÓÉan=Sn-Sn-1Çó³ön¡Ý2ʱµÄͨÏʽ£¬ÒÑÖªn=1³ÉÁ¢µÃÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÓÉbn=anan+1cos[£¨n+1£©¦Ð]=£¨-1£©n-1anan+1£¬µÃTn=b1+b2+¡­+bn=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1£®½áºÏ£¨¢ñ£©·Ön=2m£¨m¡ÊN*£©ºÍn=2m-1£¨m¡ÊN*£©Çó³öÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÓÉTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬·ÖÀë²ÎÊýt¿ÉµÃʵÊýtµÄȡֵ·¶Î§£»
£¨¢ó£©ÓÉ${a_n}=\frac{2n+1}{3}$ÖªÊýÁÐ{an}ÖÐÿһÏî¶¼²»¿ÉÄÜÊÇżÊý£®Èç´æÔÚÒÔa1ΪÊ×Ï¹«±ÈqΪ2»ò4µÄÊýÁÐ$\{{a_{n_k}}\}$£¨k¡ÊN*£©£¬´Ëʱ{a${\;}_{{n}_{k}}$}ÖÐÿһÏî³ýµÚÒ»ÏîÍâ¶¼ÊÇżÊý£¬
¹Ê²»´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪżÊýµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=1ʱ£¬ÏÔÈ»²»´æÔÚÕâÑùµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=3ʱ£¬Èô´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪ3µÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¨k¡ÊN*£©£¬Ôò${a}_{{n}_{1}}=1$£¨n1=1£©£¬Óɴ˿ɵÃ${a}_{{n}_{k}}={3}^{k-1}=\frac{2{n}_{k}+1}{3}$£¬${n}_{k}=\frac{{3}^{k}-1}{2}$£¬¼´´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¬ÇÒ${n}_{k}=\frac{{3}^{k}-1}{2}$£¨k¡ÊN*£©£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬${S}_{n}=\frac{1}{3}{n}^{2}+\frac{2}{3}n$£¬£¨n¡ÊN*£©£®
µ±n¡Ý2ʱ£¬${a}_{n}={S}_{n}-{S}_{n-1}=\frac{1}{3}{n}^{2}+\frac{2}{3}n-$$[\frac{1}{3}£¨n-1£©^{2}+\frac{2}{3}£¨n-1£©]$=$\frac{2n+1}{3}$£»
µ±n=1ʱ£¬a1=S1=1ÊʺÏÉÏʽ£®
ÊýÁÐ{an}µÄͨÏʽΪ${a}_{n}=\frac{2n+1}{3}$£¨n¡ÊN*£©£»
£¨¢ò£©¡ßbn=anan+1cos[£¨n+1£©¦Ð]=£¨-1£©n-1anan+1£¬
¡àTn=b1+b2+¡­+bn=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1£®
ÓÉ£¨¢ñ£©¿ÉÖª£¬ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«²îΪ$\frac{2}{3}$µÄµÈ²îÊýÁУ®
¢Ùµ±n=2m£¨m¡ÊN*£©Ê±£¬${T_n}={T_{2m}}={a_1}{a_2}-{a_2}{a_3}+{a_3}{a_4}-{a_4}{a_5}+¡­+{£¨-1£©^{2m-1}}{a_{2m}}{a_{2m+1}}$
=a2£¨a1-a3£©+a4£¨a3-a5£©+¡­+a2m£¨a2m-1-a2m+1£©=$-\frac{4}{3}£¨{a_2}+{a_4}+¡­+{a_{2m}}£©=-\frac{4}{3}¡Á\frac{{{a_2}+{a_{2m}}}}{2}¡Ám$
=$-\frac{1}{9}£¨8{m^2}+12m£©=-\frac{1}{9}£¨2{n^2}+6n£©$£»
¢Úµ±n=2m-1£¨m¡ÊN*£©Ê±£¬${T_n}={T_{2m-1}}={T_{2m}}-{£¨-1£©^{2m-1}}{a_{2m}}{a_{2m+1}}$
=$-\frac{1}{9}£¨8{m^2}+12m£©+\frac{1}{9}£¨16{m^2}+16m+3£©$=$\frac{1}{9}£¨8{m^2}+4m+3£©=\frac{1}{9}£¨2{n^2}+6n+7£©$£®
¡à${T_n}=\left\{\begin{array}{l}-\frac{1}{9}£¨2{n^2}+6n£©£¬nΪżÊý\\ \frac{1}{9}£¨2{n^2}+6n+7£©£¬nÎªÆæÊý\end{array}\right.$£®
ҪʹTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬Ö»ÒªÊ¹$-\frac{1}{9}£¨2{n^2}+6n£©¡Ýt{n^2}$£¨nΪÕýżÊý£©ºã³ÉÁ¢£¬¼´Ê¹$-\frac{1}{9}£¨2+\frac{6}{n}£©¡Ýt$¶ÔnΪÕýżÊýºã³ÉÁ¢£¬
¡àt$¡Ü-\frac{5}{9}$£®
¹ÊʵÊýtµÄȡֵ·¶Î§ÊÇ$£¨-¡Þ£¬-\frac{5}{9}]$£»
£¨¢ó£©ÓÉ${a_n}=\frac{2n+1}{3}$ÖªÊýÁÐ{an}ÖÐÿһÏî¶¼²»¿ÉÄÜÊÇżÊý£®
¢ÙÈç´æÔÚÒÔa1ΪÊ×Ï¹«±ÈqΪ2»ò4µÄÊýÁÐ$\{{a_{n_k}}\}$£¨k¡ÊN*£©£¬´Ëʱ{a${\;}_{{n}_{k}}$}ÖÐÿһÏî³ýµÚÒ»ÏîÍâ¶¼ÊÇżÊý£¬
¹Ê²»´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪżÊýµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»
¢Úµ±q=1ʱ£¬ÏÔÈ»²»´æÔÚÕâÑùµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£»µ±q=3ʱ£¬Èô´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪ3µÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¨k¡ÊN*£©£¬Ôò${a}_{{n}_{1}}=1$£¨n1=1£©£¬
${a}_{{n}_{k}}={3}^{k-1}=\frac{2{n}_{k}+1}{3}$£¬${n}_{k}=\frac{{3}^{k}-1}{2}$£¬¼´´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{a${\;}_{{n}_{k}}$}£¬ÇÒ${n}_{k}=\frac{{3}^{k}-1}{2}$£¨k¡ÊN*£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁкͺ¯ÊýµÄÓ¦Ó㬸ù¾ÝÌõ¼þÍÆ³öÊýÁеĵÝÍÆ¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®¿¼²éÊýÁеķÖÀàÇóºÍ£¬¿¼²éÂß¼­Ë¼Î¬ÄÜÁ¦ÓëÍÆÀíÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ËÄÃæÌåABCDµÄËĸö¶¥µã¾ùÔڰ뾶Ϊ2µÄÇòÃæÉÏ£¬ÈôAB£¬AC£¬ADÁ½Á½´¹Ö±£¬$\overrightarrow{BA}•\overrightarrow{BC}=2$£¬ÔòËÄÃæÌåABCD£®Ìå»ýµÄ×î´óֵΪ$\frac{7\sqrt{2}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼ¼°Æä³ß´çÈçͼ£¨µ¥Î»£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©cm3
A£®20¦ÐB£®16¦ÐC£®15¦ÐD£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êý$f£¨x£©=16f'£¨2£©lnx-\frac{1}{4}x+\frac{3}{4x}+2f£¨1£©$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽºÍµ¥µ÷Çø¼ä£»
£¨2£©Éèg£¨x£©=-x2+2bx-4£¬Èô¶ÔÈÎÒâx1¡Ê£¨0£¬2£©£¬x2¡Ê[1£¬2]£¬²»µÈʽf£¨x1£©¡Ýg£¨x2£©ºã³ÉÁ¢£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÃÈô¸É¸öÀⳤΪ1cmµÄСÕý·½Ìåµþ³ÉÒ»¸ö¼¸ºÎÌ壬ͼ1ΪÆäÕýÊÓͼ£¬Í¼2ΪÆä¸©ÊÓͼ£¬ÈôÕâ¸ö¼¸ºÎÌåµÄÌå»ýΪ7cm3£¬ÔòÆä²àÊÓͼΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬°ëÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2sin¦È£¬¦È¡Ê[{0£¬\frac{¦Ð}{2}}]$£®
£¨1£©ÇóCµÄ²ÎÊý·½³Ì£»
£¨2£©ÉèµãDÔÚCÉÏ£¬CÔÚD´¦µÄÇÐÏßÓëÖ±Ïß$l£ºx-\sqrt{3}y-2=0$´¹Ö±£¬¸ù¾Ý£¨1£©ÖеIJÎÊý·½³Ì£¬È·¶¨µãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèm£¬nΪÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂΪÁ½¸ö²»Í¬µÄÆ½Ãæ£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôm¡Í¦Á£¬m¡Í¦Â£¬Ôò¦Á¡Î¦Â¢ÚÈôm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦Â¢ÛÈôm¡Î¦Á£¬n¡Î¦Á£¬Ôòm¡În¢ÜÈôm¡Í¦Á£®n¡Í¦Á£¬Ôòm¡În
ÉÏÊöÃüÌâÖУ¬ËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÜB£®¢Ú¢ÛC£®¢Ù¢ÛD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{3}sin£¨{2x-\frac{¦Ð}{6}}£©+cos£¨{2x-\frac{¦Ð}{6}}£©$£¬x¡ÊR£¬
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ¼°´ËʱxµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®º¯Êý$f£¨x£©=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg£¨-3{x^2}+5x+2£©$µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨-$\frac{1}{3}$£¬+¡Þ£©B£®£¨-$\frac{1}{3}$£¬1£©C£®£¨-$\frac{1}{3}$£¬$\frac{1}{3}$£©D£®£¨-¡Þ£¬-$\frac{1}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸