精英家教网 > 高中数学 > 题目详情
2.用若干个棱长为1cm的小正方体叠成一个几何体,图1为其正视图,图2为其俯视图,若这个几何体的体积为7cm3,则其侧视图为(  )
A.B.C.D.

分析 通过几何体的体积,判断几何体中正方体的个数,排除选项A、D;从俯视图正视图推出正确选项.

解答 解:由这个几何体的体积为7cm3可知共有7个小正方体.
通过俯视图可以排除选项A、D,结合俯视图与主视图即可选出正确答案为C(若左视图为D,则只需要6个小正方体即可).
故选C.

点评 本题是基础题,考查三视图判断几何体的形状,明确三视图的画法,几何体的形状是解好本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知M是关于x的不等式x2+(a-4)x-(a+1)(2a-3)<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知M={x|1<x<3},N={x|x2-6x+8≤0}.
(1)设全集U=R,定义集合运算△,使M△N=M∩(∁UN),求M△N和N△M;
(2)若H={x||x-a|≤2},按(1)的运算定义求:(N△M)△H.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在表面积为16π的同一球面上,则PA=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$\frac{1}{z}=-5i$,则$\overline z$等于(  )
A.-$\frac{i}{5}$B.$\frac{i}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=$\frac{1}{3}$x2+$\frac{2}{3}$x.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1cos[(n+1)π](n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(Ⅲ)在数列{an}中是否存在这样一些项:a${\;}_{{n}_{1}}$,a${\;}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…,a${\;}_{{n}_{k}}$这些项都能够
构成以a1为首项,q(0<q<5)为公比的等比数列{a${\;}_{{n}_{k}}$}?若存在,写出nk关于f(x)的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:?x∈R,cos2x-sinx+2≤m;q:函数y=($\frac{1}{3}$)${\;}^{2{x}^{2}-mx+2}$在[2,+∞)上单调递减,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对任意实数x,不等式3sinx-4cosx+c>0恒成立,则c的取值范围是c>5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,球面上有A,B,C三点,∠ABC=90°,BA=BC=2,球心O到平面ABC的距离为$\sqrt{2}$,则球的体积为$\frac{32}{3}$π.

查看答案和解析>>

同步练习册答案