精英家教网 > 高中数学 > 题目详情
8.已知复数$z=\frac{2+ai}{3-i}$是纯虚数(其中i为虚数单位,a∈R),则z的虚部为(  )
A.2B.-2C.2iD.-2i

分析 直接利用复数的除法运算法则,化简复数为a+bi的形式,求出复数的虚部.

解答 解:$z=\frac{2+ai}{3-i}$=$\frac{(2+ai)(3+i)}{(3-i)(3+i)}$=$\frac{6-a+3ai+2i}{10}$,
∵复数$z=\frac{2+ai}{3-i}$是纯虚数,
∴6-a=0,
∴z=2i,
∴z的虚部为2,
故选:A

点评 本题考查复数的代数形式的混合运算,复数的基本概念的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)的焦点F与椭圆Γ:$\frac{x^2}{2}+{y^2}$=1的一个焦点重合,点M(x0,2)在抛物线上,过焦点F的直线l交抛物线于A,B两点.
(Ⅰ)求抛物线C的方程以及|MF|的值;
(Ⅱ)记抛物线C的准线与x轴交于点H,试问是否存在常数λ∈R,使得$\overrightarrow{AF}=λ\overrightarrow{FB}$且|HA|2+|HB|2=$\frac{85}{4}$都成立?若存在,求出实数λ的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设Sn是等差数列{an}的前n项和,且a11=S13=13,则a9=(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于E、D.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半径为2,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面内,复数$\frac{2-i}{1-i}$(i是虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域是R,f(0)=2,对任意x∈R,f′(x)>f(x)+1,则下列正确的为(  )
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2与f(2)+1大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.“x=5”是“x2-4x-5=0”的充分不必要条件
C.命题“若x<-1,则x2-2x-3>0”的否命题为:“若x<-1,则x2-2x-3≤0”
D.已知命题p:?x∈R,x2+x-1<0,则¬p:?x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+ax-x2(0<a≤1)
(I)$a=\frac{1}{2}$时,求f(x)的图象在点(1,f(1))处的切线的方程
(II)设函数f(x)单调递增区间为(s,t)(s<t),求t-s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(1+2x)(1-2x)7=a0+a1x+a2x2+…+a8x8,则a0+a1+a2+…+a7的值为(  )
A.-2B.-3C.253D.126

查看答案和解析>>

同步练习册答案