精英家教网 > 高中数学 > 题目详情
16.如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于E、D.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半径为2,求OA的长.

分析 (1)利用等腰三角形的性质和切线的定义即可证明;
(2)利用直径所对的圆周角为直角及正切函数的定义可得$\frac{CD}{EC}$=$\frac{1}{2}$.再利用切线的性质可得△CBD∽△EBC,于是$\frac{BD}{BC}$=$\frac{CD}{EC}$=$\frac{1}{2}$.设BD=x,BC=2x,利用切割线定理可得BC2=BD•BE,代入解出即可.

解答 解:(1)证明:如图,连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切线;
(2)∵ED是直径,∴∠ECD=90°,
在Rt△ECD中,∵tan∠CED=$\frac{1}{2}$,
∴$\frac{CD}{EC}$=$\frac{1}{2}$.
∵AB是⊙O的切线,
∴∠BCD=∠E.
又∵∠CBD=∠EBC,
∴△CBD∽△EBC,
∴$\frac{BD}{BC}$=$\frac{CD}{EC}$=$\frac{1}{2}$.
设BD=x,BC=2x,
又BC2=BD•BE,∴(2x)2=x•(x+4).
解得:x1=0,x2=$\frac{4}{3}$,
∵BD=x>0,∴BD=$\frac{4}{3}$.
∴OA=OB=BD+OD=$\frac{4}{3}$+2=$\frac{10}{3}$.

点评 本题考查了等腰三角形的性质、切线的定义、圆的性质、相似三角形的性质、切割线定理等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+lnx.
(Ⅰ)若f(x)在区间(0,1)上单调递增,求实数a的取值范围;
(Ⅱ)设函数h(x)=-$\frac{1}{2}$x2-f(x)有两个极值点x1、x2,且x1∈[$\frac{1}{2}$,1),求证:|h(x1)-h(x2)|<2-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移$\frac{π}{6}$个单位,得到g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=sin2xB.g(x)=cos2xC.$g(x)=sin(2x+\frac{π}{6})$D.$g(x)=sin(2x+\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=($\sqrt{3}$,-1).
(Ⅰ)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2x-6cos2x的值;
(Ⅱ)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求函数f(2x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P,Q两点,求△CPQ的面积的最大值,并求此时直线l的方程.(其中点C是圆的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不等式3x2+1≥mx(x-1)对于?x∈R恒成立,则实数m的取值范围是-6≤m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数$z=\frac{2+ai}{3-i}$是纯虚数(其中i为虚数单位,a∈R),则z的虚部为(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知方程x3+ax2+bx+c=0(a,b,c∈R).
(1)设a=b=4,方程有三个不同实根,求c的取值范围;
(2)求证:a2-3b>0是方程有三个不同实根的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tan(x+$\frac{π}{4}$)=3,则sinxcosx的值是$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案