精英家教网 > 高中数学 > 题目详情
11.一箱中放了8个形状完全相同的小球,其中2个红球,n(2≤n≤4)个黑球,其余的是白球,从中任意摸取2个小球,两球颜色相同的概率是$\frac{1}{4}$.
(I)求n的值;
(Ⅱ)现从中不放回地任意摸取一个球,若摸到红球或者黑球则结束摸球,用ξ表示摸球次数,求随机变量ξ的分布列和数学期望.

分析 (Ⅰ)设“从箱中任意摸取两个小球,两球颜色相同”为事件A,由已知列出方程,由此能求出n.
(Ⅱ)ξ的可能取值为1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列及Eξ.

解答 解:(Ⅰ)设“从箱中任意摸取两个小球,两球颜色相同”为事件A,
由题意P(A)=$\frac{{C}_{2}^{2}+{C}_{n}^{2}+{C}_{6-n}^{2}}{{C}_{8}^{2}}$=$\frac{1}{4}$,
解得n=3.
(Ⅱ)ξ的可能取值为1,2,3,4,
P(ξ=1)=$\frac{5}{8}$,
P(ξ=2)=$\frac{3}{8}×\frac{5}{7}$=$\frac{15}{56}$,
P(ξ=3)=$\frac{3}{8}×\frac{2}{7}×\frac{5}{6}$=$\frac{5}{56}$,
P(ξ=4)=$\frac{3}{8}×\frac{2}{7}×\frac{1}{6}×1$=$\frac{1}{56}$,
∴ξ的分布列为:

 ξ 1 2 3 4
 P $\frac{5}{8}$ $\frac{15}{56}$ $\frac{5}{56}$ $\frac{1}{56}$
Eξ=$1×\frac{5}{8}+2×\frac{15}{56}+3×\frac{5}{56}+4×\frac{1}{56}$=$\frac{3}{2}$.

点评 本题考查概率的求法及应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.直线y=kx+m与椭圆有$\frac{x^2}{2}+{y^2}=1$两个不同的交点M、N
(1)若直线l过椭圆的左焦点F,且线段MN的中点P在直线x+y=0上,求直线l的方程
(2)若k=1,且以线段MN为直径的圆过点A(1,0),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点F1、F2分别为椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点F2也为抛物线C2:y2=8x的焦点,P为椭圆C1上的一动点,且△PF1F2的面积最大值为2$\sqrt{2}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)T为直线x=-3上任意一点,过点F1作TF1的垂线交椭圆C1于M,N两点,求$\frac{{|T{F_1}|}}{|MN|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=x-ln(x+1)+m,若函数y=f(x)的图象在点(1,f(1))处的切线方程为x-2y+1-2ln2=0
(1)求实数m的值
(2)若对于任意的x∈(-1,0],总有f(x)≥ax2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线的中心在原点,对称轴在坐标轴上,离心率为$\sqrt{2}$,且经过点P(2,1),则该双曲线的标准方程是$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1;渐近线方程是y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(1+i)•z=3-2i(i是虚数单位),则z等于(  )
A.$\frac{-1-5i}{2}$B.$\frac{1+5i}{2}$C.$\frac{1-5i}{2}$D.$\frac{-1+5i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为正项等比数列,若a5=2,a2a12=64,则数列{an}的公比为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b≥1)的离心率e=$\frac{\sqrt{3}}{2}$,椭圆的左焦点为F,上顶点为EE,直线EF被圆x2+y2=$\frac{15}{16}$截得的弦长为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)过点M(3,0)的直线交椭圆C于点A,B点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O为坐标原点),当|AB|<$\sqrt{3}$时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}满足a3=3,a6=81,数列{bn}满足b1=1,bn+1=log3abn,则b10=(  )
A.23B.19C.-17D.-18

查看答案和解析>>

同步练习册答案