精英家教网 > 高中数学 > 题目详情
3.已知数列{an}为正项等比数列,若a5=2,a2a12=64,则数列{an}的公比为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

分析 设数列{an}的公比为q(q>0),由已知结合等比数列的性质求得a7,再由a5=2求得q2,则答案可求.

解答 解:设数列{an}的公比为q(q>0),
由等比数列的性质可得,a2a12=${{a}_{7}}^{2}$=64,
又an>0,∴a7=8,
又a5=2,∴${q}^{2}=\frac{{a}_{7}}{{a}_{5}}=4$,
则q=2.
故选:B.

点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在直角三棱柱ABC-A1B1C1中,AB⊥BC,P是A1C1的中点,AB=BC=kPA,若直线PA与平面BB1C1C所成角的正弦值为$\frac{1}{4}$,则k的值为(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点C(1,5),点P(x,y)在不等式组$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+5y≤0}\\{x-y-2≤0}\end{array}\right.$,表示的平面区域内(含边界),则|PC|的最小值为(  )
A.$\sqrt{26}$B.$\sqrt{26}$-1C.$\sqrt{26}$+1D.$\sqrt{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一箱中放了8个形状完全相同的小球,其中2个红球,n(2≤n≤4)个黑球,其余的是白球,从中任意摸取2个小球,两球颜色相同的概率是$\frac{1}{4}$.
(I)求n的值;
(Ⅱ)现从中不放回地任意摸取一个球,若摸到红球或者黑球则结束摸球,用ξ表示摸球次数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为18$\sqrt{3}$,则球O的体积为288π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校高中每个年级只有三个班,且同一年级的三个班的羽毛球水平相当,各年级举办班级羽毛球比赛时,都是三班得冠军的概率为(  )
A.$\frac{1}{27}$B.$\frac{1}{9}$C.$\frac{1}{8}$D.$\frac{1}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}的前n项和为Sn,an=b•an-1,下列叙述正确的是(  )
A.当b=0时,数列{an}是等差数列B.当b≠0时,数列{an}是等比数列
C.当b=0时,Sn=a1D.当b≠0时,Sn=$\frac{{{a_1}({1-{b^n}})}}{1-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.边长为2$\sqrt{3}$的正三角形ABC,其内切圆与BC切于点E,F为内切圆上任意一点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围为[3,9].

查看答案和解析>>

同步练习册答案