精英家教网 > 高中数学 > 题目详情
8.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为18$\sqrt{3}$,则球O的体积为288π.

分析 当点C位于垂直于面AOB时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为18$\sqrt{3}$,求出半径,即可求出球O的体积.

解答 解:如图所示,当点C位于垂直于面AOB时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}×{R}^{2}sin60°×R=18\sqrt{3}$,故R=6,则球O的体积为$\frac{4}{3}$πR3=288π,
故答案为:288π.

点评 本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB时,三棱锥O-ABC的体积最大是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知点A(-2,0),P是⊙O:x2+y2=4上任意一点,P在x轴上的射影为Q,$\overrightarrow{QP}$=2$\overrightarrow{QG}$,动点G的轨迹为C,直线y=kx(k≠0)与轨迹交于E,F两点,直线AE,AF分别与y轴交于点M,N.
(1)求轨迹C的方程;
(2)以MN为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=x-ln(x+1)+m,若函数y=f(x)的图象在点(1,f(1))处的切线方程为x-2y+1-2ln2=0
(1)求实数m的值
(2)若对于任意的x∈(-1,0],总有f(x)≥ax2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(1+i)•z=3-2i(i是虚数单位),则z等于(  )
A.$\frac{-1-5i}{2}$B.$\frac{1+5i}{2}$C.$\frac{1-5i}{2}$D.$\frac{-1+5i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为正项等比数列,若a5=2,a2a12=64,则数列{an}的公比为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高三文科班有A,B两个学习小组,每组8人,在刚刚进行的双基考试中这两组学生历史考试的成绩如图茎叶图所示:
(1)这两组学生历史成绩的中位数和平均数分别是多少?
(2)历史老师想要在这两个学习小组中选择一个小组进行奖励,请问选择哪个小组比较好,只说明结论,不用说明理由;
(3)若成绩在90分以上(包括90分)的同学视为优秀,则从这两组历史成绩优秀的学生中抽取2人,求至少有一人来自B学习小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b≥1)的离心率e=$\frac{\sqrt{3}}{2}$,椭圆的左焦点为F,上顶点为EE,直线EF被圆x2+y2=$\frac{15}{16}$截得的弦长为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)过点M(3,0)的直线交椭圆C于点A,B点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O为坐标原点),当|AB|<$\sqrt{3}$时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{2+ai}{1+i}$=b+i,则复数a+bi在复平面内表示的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知tanα=2且α为锐角,则cos2α=-$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案