·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬µãµ½Ö±ÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°a£¬b£¬cµÄ¹ØÏµ£¬½âµÃa=2£¬b=1£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬AB·½³ÌΪy=k£¨x-3£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢ÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÓÉ¡÷£¾0µÃk2£¼$\frac{1}{5}$£¬ÓÉΤ´ï¶¨Àí¼°$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$£¬ÓÃk¡¢t±íʾ³öµãPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³ÌµÃ36k2=t2£¨1+4k2£©¢Ù£¬ÓÉÏÒ³¤¹«Ê½¼°|AB|£¼$\sqrt{3}$¿ÉµÃk2£¾$\frac{1}{8}$£¬¼´ÓÐ$\frac{1}{8}$£¼k2£¼$\frac{1}{5}$¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÇóµÃtµÄ·¶Î§£®
½â´ð ½â£º£¨1£©e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
ÉèÍÖÔ²µÄ×ó½¹µãΪF£¨-c£¬0£©£¬É϶¥µãΪE£¨0£¬b£©£¬
Ö±ÏßEFµÄ·½³ÌΪbx-cy+bc=0£¬
Ô²Ðĵ½Ö±ÏߵľàÀëΪd=$\frac{|bc|}{\sqrt{{b}^{2}+{c}^{2}}}$£¬
¿ÉµÃÏÒ³¤Îª2$\sqrt{\frac{15}{16}-\frac{{b}^{2}{c}^{2}}{{b}^{2}+{c}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓÐ3b2+3c2=4b2c2£¬
ÓÖc=$\frac{\sqrt{3}}{2}$a£¬a2-b2=c2£¬
½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬AB·½³ÌΪy=k£¨x-3£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-3£©}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬ÕûÀíµÃ£¨1+4k2£©x2-24k2x+36k2-4=0£®
ÓÉ¡÷=242k4-16£¨9k2-1£©£¨1+4k2£©£¾0£¬µÃk2£¼$\frac{1}{5}$£¬
x1+x2=$\frac{24{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{36{k}^{2}-4}{1+4{k}^{2}}$£¬
¿ÉµÃ$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$£¬
¼´ÓУ¨x1+x2£¬y1+y2£©=t£¨x£¬y£©£¬
Ôòx=$\frac{1}{t}$£¨x1+x2£©=$\frac{1}{t}$•$\frac{24{k}^{2}}{1+4{k}^{2}}$£¬y=$\frac{1}{t}$£¨y1+y2£©=$\frac{1}{t}$[k£¨x1+x2£©-6k]=$\frac{-6k}{t£¨1+4{k}^{2}£©}$£¬
ÓɵãPÔÚÍÖÔ²ÉÏ£¬µÃ$\frac{£¨24{k}^{2}£©^{2}}{{t}^{2}£¨1+4{k}^{2}£©^{2}}$+$\frac{144{k}^{2}}{{t}^{2}£¨1+4{k}^{2}£©^{2}}$=4£¬»¯¼òµÃ36k2=t2£¨1+4k2£©¢Ù£¬
ÓÖÓÉ|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|£¼$\sqrt{3}$£¬¼´£¨1+k2£©[£¨x1+x2£©2-4x1x2]£¼3£¬
½«x1+x2£¬x1x2´úÈëµÃ£¨1+k2£©[$\frac{2{4}^{2}{k}^{4}}{£¨1+4{k}^{2}£©^{2}}$-$\frac{4£¨36{k}^{2}-4£©}{1+4{k}^{2}}$]£¼3£¬
»¯¼òµÃ£¨8k2-1£©£¨16k2+13£©£¾0£¬
Ôò8k2-1£¾0£¬¼´k2£¾$\frac{1}{8}$£¬Ôò$\frac{1}{8}$£¼k2£¼$\frac{1}{5}$£¬¢Ú
ÓÉ¢Ù£¬µÃt2=$\frac{36{k}^{2}}{1+4{k}^{2}}$=9-$\frac{9}{1+4{k}^{2}}$£¬ÁªÁ¢¢Ú£¬¿ÉµÃ3£¼t2£¼4£¬
½âµÃ-2£¼t£¼-$\sqrt{3}$»ò$\sqrt{3}$£¼t£¼2£®
ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-2£¬-$\sqrt{3}$£©¡È£¨$\sqrt{3}$£¬2£©£®
µãÆÀ ±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢ÏòÁ¿µÄÏßÐÔÔËË㣬¿¼²éѧÉúµÄÔËËãÄÜÁ¦¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{27}$ | B£® | $\frac{1}{9}$ | C£® | $\frac{1}{8}$ | D£® | $\frac{1}{36}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
| C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ·Ç³ä·Ö·Ç±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µ±b=0ʱ£¬ÊýÁÐ{an}ÊǵȲîÊýÁÐ | B£® | µ±b¡Ù0ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁÐ | ||
| C£® | µ±b=0ʱ£¬Sn=a1 | D£® | µ±b¡Ù0ʱ£¬Sn=$\frac{{{a_1}£¨{1-{b^n}}£©}}{1-b}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{{\sqrt{3}}}{2}$ | C£® | $\frac{3}{2}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com