20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b¡Ý1£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²µÄ×ó½¹µãΪF£¬É϶¥µãΪEE£¬Ö±ÏßEF±»Ô²x2+y2=$\frac{15}{16}$½ØµÃµÄÏÒ³¤Îª$\frac{\sqrt{3}}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãM£¨3£¬0£©µÄÖ±Ïß½»ÍÖÔ²CÓÚµãA£¬Bµã£¬ÉèPΪÍÖÔ²ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$£¨OÎª×ø±êÔ­µã£©£¬µ±|AB|£¼$\sqrt{3}$ʱ£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬µãµ½Ö±ÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°a£¬b£¬cµÄ¹ØÏµ£¬½âµÃa=2£¬b=1£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬AB·½³ÌΪy=k£¨x-3£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢ÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÓÉ¡÷£¾0µÃk2£¼$\frac{1}{5}$£¬ÓÉΤ´ï¶¨Àí¼°$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$£¬ÓÃk¡¢t±íʾ³öµãPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³ÌµÃ36k2=t2£¨1+4k2£©¢Ù£¬ÓÉÏÒ³¤¹«Ê½¼°|AB|£¼$\sqrt{3}$¿ÉµÃk2£¾$\frac{1}{8}$£¬¼´ÓÐ$\frac{1}{8}$£¼k2£¼$\frac{1}{5}$¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÇóµÃtµÄ·¶Î§£®

½â´ð ½â£º£¨1£©e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
ÉèÍÖÔ²µÄ×ó½¹µãΪF£¨-c£¬0£©£¬É϶¥µãΪE£¨0£¬b£©£¬
Ö±ÏßEFµÄ·½³ÌΪbx-cy+bc=0£¬
Ô²Ðĵ½Ö±ÏߵľàÀëΪd=$\frac{|bc|}{\sqrt{{b}^{2}+{c}^{2}}}$£¬
¿ÉµÃÏÒ³¤Îª2$\sqrt{\frac{15}{16}-\frac{{b}^{2}{c}^{2}}{{b}^{2}+{c}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬
¼´ÓÐ3b2+3c2=4b2c2£¬
ÓÖc=$\frac{\sqrt{3}}{2}$a£¬a2-b2=c2£¬
½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬AB·½³ÌΪy=k£¨x-3£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-3£©}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬ÕûÀíµÃ£¨1+4k2£©x2-24k2x+36k2-4=0£®
ÓÉ¡÷=242k4-16£¨9k2-1£©£¨1+4k2£©£¾0£¬µÃk2£¼$\frac{1}{5}$£¬
x1+x2=$\frac{24{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{36{k}^{2}-4}{1+4{k}^{2}}$£¬
¿ÉµÃ$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$£¬
¼´ÓУ¨x1+x2£¬y1+y2£©=t£¨x£¬y£©£¬
Ôòx=$\frac{1}{t}$£¨x1+x2£©=$\frac{1}{t}$•$\frac{24{k}^{2}}{1+4{k}^{2}}$£¬y=$\frac{1}{t}$£¨y1+y2£©=$\frac{1}{t}$[k£¨x1+x2£©-6k]=$\frac{-6k}{t£¨1+4{k}^{2}£©}$£¬
ÓɵãPÔÚÍÖÔ²ÉÏ£¬µÃ$\frac{£¨24{k}^{2}£©^{2}}{{t}^{2}£¨1+4{k}^{2}£©^{2}}$+$\frac{144{k}^{2}}{{t}^{2}£¨1+4{k}^{2}£©^{2}}$=4£¬»¯¼òµÃ36k2=t2£¨1+4k2£©¢Ù£¬
ÓÖÓÉ|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|£¼$\sqrt{3}$£¬¼´£¨1+k2£©[£¨x1+x2£©2-4x1x2]£¼3£¬
½«x1+x2£¬x1x2´úÈëµÃ£¨1+k2£©[$\frac{2{4}^{2}{k}^{4}}{£¨1+4{k}^{2}£©^{2}}$-$\frac{4£¨36{k}^{2}-4£©}{1+4{k}^{2}}$]£¼3£¬
»¯¼òµÃ£¨8k2-1£©£¨16k2+13£©£¾0£¬
Ôò8k2-1£¾0£¬¼´k2£¾$\frac{1}{8}$£¬Ôò$\frac{1}{8}$£¼k2£¼$\frac{1}{5}$£¬¢Ú
ÓÉ¢Ù£¬µÃt2=$\frac{36{k}^{2}}{1+4{k}^{2}}$=9-$\frac{9}{1+4{k}^{2}}$£¬ÁªÁ¢¢Ú£¬¿ÉµÃ3£¼t2£¼4£¬
½âµÃ-2£¼t£¼-$\sqrt{3}$»ò$\sqrt{3}$£¼t£¼2£®
ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-2£¬-$\sqrt{3}$£©¡È£¨$\sqrt{3}$£¬2£©£®

µãÆÀ ±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢ÏòÁ¿µÄÏßÐÔÔËË㣬¿¼²éѧÉúµÄÔËËãÄÜÁ¦¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒbsinA=$\sqrt{3}$acosB£¬Ôò½ÇBµÄ´óСΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ò»ÏäÖзÅÁË8¸öÐÎ×´ÍêÈ«ÏàͬµÄСÇò£¬ÆäÖÐ2¸öºìÇò£¬n£¨2¡Ün¡Ü4£©¸öºÚÇò£¬ÆäÓàµÄÊǰ×Çò£¬´ÓÖÐÈÎÒâÃþÈ¡2¸öСÇò£¬Á½ÇòÑÕÉ«ÏàͬµÄ¸ÅÂÊÊÇ$\frac{1}{4}$£®
£¨I£©ÇónµÄÖµ£»
£¨¢ò£©ÏÖ´ÓÖв»·Å»ØµØÈÎÒâÃþȡһ¸öÇò£¬ÈôÃþµ½ºìÇò»òÕߺÚÇòÔò½áÊøÃþÇò£¬ÓæαíʾÃþÇò´ÎÊý£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªA£¬BÊÇÇòOµÄÇòÃæÉÏÁ½µã£¬¡ÏAOB=60¡ã£¬CΪ¸ÃÇòÃæÉϵ͝µã£¬ÈôÈýÀâ×¶O-ABCÌå»ýµÄ×î´óֵΪ18$\sqrt{3}$£¬ÔòÇòOµÄÌå»ýΪ288¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³Ñ§Ð£¸ßÖÐÿ¸öÄê¼¶Ö»ÓÐÈý¸ö°à£¬ÇÒͬһÄê¼¶µÄÈý¸ö°àµÄÓðëÇòˮƽÏ൱£¬¸÷Äê¼¶¾Ù°ì°à¼¶ÓðëÇò±ÈÈüʱ£¬¶¼ÊÇÈý°àµÃ¹Ú¾üµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{27}$B£®$\frac{1}{9}$C£®$\frac{1}{8}$D£®$\frac{1}{36}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèÌõ¼þ{p£ºlog2£¨x-1£©£¼0£»½áÂÛq£º£¨$\frac{1}{2}$£©x-3£¾1£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³äÒªÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®±ØÒª²»³ä·ÖÌõ¼þD£®·Ç³ä·Ö·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬an=b•an-1£¬ÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µ±b=0ʱ£¬ÊýÁÐ{an}ÊǵȲîÊýÁÐB£®µ±b¡Ù0ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁÐ
C£®µ±b=0ʱ£¬Sn=a1D£®µ±b¡Ù0ʱ£¬Sn=$\frac{{{a_1}£¨{1-{b^n}}£©}}{1-b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³µ¥Î»¾ÙÐÐÁª»¶»î¶¯£¬Ã¿ÃûÖ°¹¤¾ùÓÐÒ»´Î³é½±»ú»á£¬Ã¿´Î³é½±¶¼ÊÇ´Ó¼×ÏäºÍÒÒÏäÖи÷Ëæ»úÃþÈ¡1¸öÇò£¬ÒÑÖª¼×ÏäÖÐ×°ÓÐ3¸öºìÇò£¬5¸öÂÌÇò£¬ÒÒÏäÖÐ×°ÓÐ3¸öºìÇò£¬3¸öÂÌÇò£¬2¸ö»ÆÇò£®ÔÚÃþ³öµÄ2¸öÇòÖУ¬Èô¶¼ÊǺìÇò£¬Ôò»ñµÃÒ»µÈ½±£»Èô¶¼ÊÇÂÌÇò£¬Ôò»ñµÃ¶þµÈ½±£»ÈôÖ»ÓÐ1¸öºìÇò£¬Ôò»ñµÃÈýµÈ½±£»Èô1¸öÂÌÇòºÍ1¸ö»ÆÇò£¬Ôò²»»ñ½±£®
£¨¢ñ£©ÇóÿÃûÖ°¹¤»ñ½±µÄ¸ÅÂÊ£»
£¨¢ò£©ÉèXΪǰ3ÃûÖ°¹¤³é½±ÖлñµÃÒ»µÈ½±ºÍ¶þµÈ½±µÄ´ÎÊýÖ®ºÍ£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÕýÈýÀâÖùABC-A1B1C1£¨²àÀâ´¹Ö±µ×Ãæ£¬µ×ÃæÎªÕýÈý½ÇÐεÄÀâÖù£©µÄµ×Ãæ±ß³¤Îª2£¬²àÀⳤΪ$\sqrt{3}$£¬ÔòÕýÈýÀâÖùABC-A1B1C1µÄÌå»ýΪ£¨¡¡¡¡£©
A£®1B£®$\frac{{\sqrt{3}}}{2}$C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸