精英家教网 > 高中数学 > 题目详情
7.计算:
(Ⅰ)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}$;
(Ⅱ)log98-log29+3${\;}^{lo{g}_{3}7}$-(lg$\frac{5}{2}$+2lg2).

分析 (1)直接利用有理指数幂的运算法则化简求解即可.
(2)利用导数的运算法则化简求解即可.

解答 (本小题满分10分)
解:(1 )${({\frac{16}{81}})^{-\frac{3}{4}}}$-${({\sqrt{3}-\sqrt{2}})^0}$-${({1\frac{9}{16}})^{\frac{1}{2}}}$=${(\frac{3}{2})}^{3}$-${({\sqrt{3}-\sqrt{2}})^0}$-${(\frac{5}{4})}^{1}$=$\frac{9}{8}$…(5分)
(2)${log_9}8•{log_2}9+{3^{{{log}_3}7}}-({lg\frac{5}{2}+2lg2})$=$\frac{3}{2}lo{g}_{3}2•2lo{g}_{2}3+7-(lg5-lg2+2lg2)$=9…(10分)

点评 本题考查对数的运算法则以及指数的运算法则的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,圆C的方程为ρ=4cosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3t+3}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)写出圆C的直角坐标方程以及直线l的普通方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设P是曲线y=$\sqrt{1{-x}^{2}}$上的点,若对曲线y=x+$\frac{a}{x}$(a>0,x>0)上的任意一点Q,恒有|PQ|≥1,则a的取值范围是(  )
A.[$\sqrt{2}$-1,+∞)B.[2$\sqrt{2}$-2,+∞)C.[$\frac{4}{5}$,+∞)D.(0,2$\sqrt{2}$-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把座位编号为1,2,3,4,5,6的6张电影票分给甲、乙、丙、丁四个人,每人至少分一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为(  )
A.240B.144C.196D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了得到函数$y={(\frac{1}{3})^x}$的图象,可以把函数$y=3×{(\frac{1}{3})^x}$的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移3个单位D.向右平移3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把函数y=sinx的图象上所有点向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩小到原来的$\frac{1}{2}$(纵坐标不变),所得函数解析式为y=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0),则(  )
A.ω=2,φ=-$\frac{π}{3}$B.ω=2,φ=-$\frac{π}{6}$C.ω=$\frac{1}{2},φ=-\frac{π}{6}$D.ω=$\frac{1}{2},φ=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求值:$\frac{\sqrt{1-sin20°}}{cos10°-sin170°}$
(2)求证:cosx+sinxtan$\frac{x}{2}$=1,(x≠π+2kπ,k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从1,2,3,4,5在这五个数中任取2个数,则取出的两个数是连续自然数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将演绎推理“函数y=2x+1的图象是一条直线.”恢复成完全的三段论形式,其中大前提是一次函数的图象是一条直线.

查看答案和解析>>

同步练习册答案