精英家教网 > 高中数学 > 题目详情
16.从1,2,3,4,5在这五个数中任取2个数,则取出的两个数是连续自然数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 本题是一个等可能事件的概率,从1,2,3,4,5,中任意取出2个数共有C52种结果,数字是连续自然数的情况可以列举出共有4种情况,得到概率.

解答 解:由题意知本题是一个等可能事件的概率,
从1,2,3,4,5中任意取出2个数共有C52=10种结果,
数字是连续自然数的情况有(1,2),(2,3),(3,4),(4,5)共4种情况,
故取出的两个数是连续自然数的概率P=$\frac{4}{10}$=$\frac{2}{5}$,
故选:A.

点评 本题考查等可能事件概率的求法,用到的知识点为:概率=所求情况数与总情况数之比,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥BA1
(Ⅱ)若M为A1C1的中点,问棱AB上是否存在点N,使得MN∥平面BCC1B1?若存在,求出$\frac{A{N}_{1}}{NB}$的值,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(Ⅰ)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}$;
(Ⅱ)log98-log29+3${\;}^{lo{g}_{3}7}$-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知随机变量$X~B(6,\frac{1}{2})$,则E(X)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知具有线性相关的两个变量x,y之间的一组数据如下:
x12345
y0.50.92.13.03.5
且回归方程为$\hat y=0.8x+a$,则a的值为-0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sin(2x-$\frac{π}{4}$),则f(x)的最小正周期和一个单调增区间分别为(  )
A.π,[-$\frac{π}{4}$,$\frac{π}{4}$]B.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]C.2π,[-$\frac{π}{4}$,$\frac{3π}{4}$]D.2π,[-$\frac{π}{4}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-2x2+bx+c,当x=1时有最大值1.
(1)若方程|f(x)|=m有4个不同实根,求实数m的取值范围,并求这4个实根的和;
(2)当x∈[m,n](0<m<n)时,f(x)取值范围为[$\frac{1}{n}$,$\frac{1}{m}$],试求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sinx=\frac{{\sqrt{3}}}{3}$,$x∈({\frac{π}{2},\;π})$,则x等于(  )
A.$\frac{π}{2}+arcsin\frac{{\sqrt{3}}}{3}$B.$α≠\frac{kπ}{2}(k∈Z)$C.$arcsin\frac{{\sqrt{3}}}{3}$D.$π-arcsin\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.cos6°cos36°+cos84°cos54°的值等于(  )
A.$-\frac{1}{2}$B.0C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案