如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为
,且过点
,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.![]()
(1)求椭圆C的方程;
(2)求点P的坐标;
(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离
的最小值.
科目:高中数学 来源: 题型:解答题
如图所示,已知椭圆
=1(a>b>0)的右焦点为F2(1,0),点A
在椭圆上.![]()
(1)求椭圆方程;
(2)点M(x0,y0)在圆x2+y2=b2上,点M在第一象限,过点M作圆x2+y2=b2的切线交椭圆于P、Q两点,问|
|+|
|+|
|是否为定值?如果是,求出该定值;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△
的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(1)求顶点
的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(2)当
时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合), 试问:直线
与
轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点
作直线
交抛物线于
,
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动直线
与椭圆![]()
交于![]()
、![]()
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明
和
均为定值;
(2)设线段
的中点为
,求
的最大值;
(3)椭圆
上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
,离心率为
,P是椭圆上一点,且
面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,离心率为
.
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com