精英家教网 > 高中数学 > 题目详情
12.对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
频率0.050.250.350.250.100
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列、数学期望以及方差.

分析 (I)求出日车流量不低于10万辆和日车流量低于5万辆的概率,利用相互独立事件的概率公式计算;
(II)根据二项分布的概率计算公式求出概率,得出分布列,代入公式计算数学期望和方差.

解答 解:(Ⅰ)设A1表示事件“日车流量不低于10万辆”,A2表示事件“日车流量低于5万辆”,
B表示事件“在未来连续3天里有连续2天日车流量不低于10万辆且另1天车流量低于5万辆”.
则P(A1)=0.35+0.25+0.10=0.70,P(A2)=0.05,
所以P(B)=0.7×0.7×0.05×2=0.049.
(Ⅱ)X可能取的值为0,1,2,3,
则P(X=0)=(1-0.7)3=0.027,P(X=1)=${C}_{3}^{1}$•0.7•(1-0.7)2=0.189,
P(X=2)=${C}_{3}^{2}$•0.72•(1-0.7)=0.441,P(X=3)=0.73=0.343.
X的分布列为

X0123
P0.0270.1890.4410.343
∵X~B(3,0.7),∴E(X)=3×0.7=2.1.
D(X)=3×0.7×(1-0.7)=0.63.

点评 本题考查了二项分布,相互独立事件的概率计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{alnx}{x}$,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,讨论F(x)=f(x)-g(x)的单调区间;
(2)已知函数f(x)的曲线与函数g(x)的曲线有两个交点,设两个交点的横坐标分别为x1,x2,证明:$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})>2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈({0,\frac{π}{,2}})$,下列不等式中不成立的是(  )
A.sinα+cosα>1B.sinα-cosα<1C.cos(α+β)>cos(α-β)D.sin(α+β)>sin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:
男性女性总计
爱好10
不爱好8
总计30
已知在这30人中随机抽取1人抽到爱好运动的员工的概率是$\frac{8}{15}$.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?
(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=f'(1)ex-1-f(0)x+x2,则f'(1)=2e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.经过A(-2,3),B(4,-1)的直线方程为(  )
A.2x-4y+7=0B.2x+3y-5=0C.2x-3y+5=0D.3x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-(a+1)x-$\frac{1}{x}$.
(1)当a=-$\frac{3}{2}$时,讨论f(x)的单调性;
(2)当a=1时,若g(x)=-x-$\frac{1}{x}$-1,证明:当x>1时,g(x)的图象恒在f(x)的图象上方;
(3)证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N+,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知各顶点都在一个球面上的正四棱柱(侧棱垂直于底面且底面为正方形的四棱柱)的高为2,这个球的表面积为6π,则这个正四棱柱的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平行六面体ABCD-A${\;}_{{1}_{\;}}$B1C1D1中,$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{BC}$+3z$\overrightarrow{{C}_{1}C}$,则x+y+z=(  )
A.1B.$\frac{7}{6}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案