精英家教网 > 高中数学 > 题目详情
如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠ABC=45°,直角梯形ABCD与矩形ADQP所在平面垂直,将矩形ADQP沿PD对折,使得翻折后点Q落在BC上,设DC=1。
(1)求证:AQ⊥DQ;
(2)求线段AD的最小值,并指出此时点Q的位置;
(3)当AD长度最小时,求直线BD与平面PDQ所成的角的正弦值。
解:(1)∵平面ABCD⊥平面ADP,PA⊥AD,
∴PA⊥平面ABCD,
由已知PQ⊥DQ,
∴AQ⊥DQ。
(2)设CQ=x,AD=y
由(1)得AQ⊥DQ
在Rt△AQD中,

当且仅当x=1时取等号
所以AD最小值为2,此时CQ=1。
(3)易得DQ⊥平面PAQ,则平面PDQ⊥平面PAQ,PQ是其交线,连接BD交AQ于E,过点E作EF⊥PQ于F,连接FD,则EF⊥平面PDQ
∴∠EDF就是BD与平面PDQ所成的角
由已知得,PQ=2
∴△PAQ为等腰直角三角形,
则可得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案