精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在R上的奇函数,当时,其中

(1)求的解析式;

(2)解关于的不等式结果用集合或区间表示

【答案】(1);(2)见解析

【解析】

(1)首先利用奇函数的性质求解时函数的解析式,然后将函数的解析式写成分段函数的形式即可;

(2)由题意结合函数的奇偶性和函数的单调性分类讨论两种情况求解不等式的解集即可.

(1)x<0时,-x>0,f(-x)=ax-1.

f(x)是奇函数,有f(-x)=-f(x),

f(-x)=ax-1,

f(x)=-ax+1(x<0).

∴所求的解析式为.

(2)不等式等价于

.

a>1时,有

可得此时不等式的解集为.

同理可得,当0<a<1时,不等式的解集为R.

综上所述,当a>1时,不等式的解集为

0<a<1时,不等式的解集为R.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为对数函数,并且它的图象经过点,函数=在区间上的最小值为,其中.

(1)求函数的解析式;

(2)求函数的最小值的表达式;

(3)是否存在实数同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点

(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)的图象如图所示,曲线BCD为抛物线的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,若 =(1,sinA)与 =(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值;

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 直线与平面 的中点 .

(Ⅰ)若求证平面平面

(Ⅱ)若求直线与平面所成角的正弦值的取值范围.

查看答案和解析>>

同步练习册答案