【题目】已知
是定义在R上的奇函数,当
时,
.其中
且
.
(1)求
的解析式;
(2)解关于
的不等式
,结果用集合或区间表示.
科目:高中数学 来源: 题型:
【题目】已知函数
为对数函数,并且它的图象经过点
,函数
=
在区间
上的最小值为
,其中
.
(1)求函数
的解析式;
(2)求函数
的最小值
的表达式;
(3)是否存在实数
同时满足以下条件:①
;②当
的定义域为
时,值域为
.若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点 ![]()
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=
sin2x﹣cos2x﹣
,(x∈R).
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
,f(C)=0,若
=(1,sinA)与
=(2,sinB)共线,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
关于
轴对称,顶点在坐标原点
,直线
经过抛物线
的焦点.
(1)求抛物线
的标准方程;
(2)若不经过坐标原点
的直线
与抛物线
相交于不同的两点
,
,且满足
,证明直线
过
轴上一定点
,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
,
,
,
,直线
与平面
成
角,
为
的中点,
,
.
![]()
(Ⅰ)若
,求证:平面
平面
;
(Ⅱ)若
,求直线
与平面
所成角的正弦值的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com