精英家教网 > 高中数学 > 题目详情
3.设等差数列{an}的公差为d,且2a1=d,2an=a2n-1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}+1}{{2}^{n+1}}$,求数列{bn}的前n项和Sn

分析 (1)利用递推关系、等差数列的通项公式即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵等差数列{an}的公差为d,2an=a2n-1.
取n=1,则2a1=a2-1=a1+d-1,与2a1=d联立,解得d=2,a1=1.
∴an=1+2(n-1)=2n-1.
(2)bn=$\frac{{a}_{n}+1}{{2}^{n+1}}$=$\frac{2n-1+1}{{2}^{n+1}}$=$\frac{n}{{2}^{n}}$,
∴数列{bn}的前n项和Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{S}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
∴Sn=2-$\frac{2+n}{{2}^{n}}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.抛物线y=4ax2(a≠0)的焦点坐标是$(0,\frac{1}{16a})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-2ax(其中a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范围;
(Ⅲ)设g(x)=f(x)+$\frac{1}{2}$x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的极坐标方程是ρ=1,在以极点O为原点,极轴为x轴的正半轴的平面直角坐标系中,将曲线C1所有点的横坐标伸长为原来的3倍,得到曲线C2
(Ⅰ)求曲线C2的参数方程;
(Ⅱ)直线l过点M(1,0),倾斜角为$\frac{π}{4}$,与曲线C2交于A、B两点,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow m$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow n$=(-$\sqrt{3}$,1),x∈R,则|$\overrightarrow m$-$\overrightarrow n$|的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l过点P(2,3)与以A(3,2),B(-1,-3)为端点的线段AB有公共点,则直线l倾斜角的取值范围是$[arctan2,\frac{3π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,短轴的两个端点分别为A、B,且|AB|=2,△ABF为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N; 过点M 作x轴的垂线,垂足为H,直线NH与椭圆C交于另一点J,若$\overrightarrow{HM}•\overrightarrow{HN}=-\frac{1}{2}$,试求以线段NJ为直径的圆的方程;
(3)已知l1、l2是过点A的两条互相垂直的直线,直线l1与圆O:x2+y2=4相交于P、Q两点,直线l2与椭圆C交于另一点R;求△PQR面积取最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式|x+1|-|x-2|≥a2-4a的解集为R,则实数a的取值范围是(  )
A.(-∞,1]∪[3,+∞)B.(-∞,1)∪(3,+∞)C.[1,3]D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,长为2,宽为1的矩形木块,在桌面上作无滑动翻滚,翻滚到第三面后被一小木块挡住,使木块底与桌面成30°角,则点A走过的路程是$\frac{7}{6}π+\frac{\sqrt{5}}{2}π$.

查看答案和解析>>

同步练习册答案