精英家教网 > 高中数学 > 题目详情
17.设数列{an}的前n项和为Sn,令Tn=$\frac{{S}_{1}+{S}_{2}+…+{S}_{n}}{n}$,称Tn为数列a1,a2,…,an的“平均和”,已知数列a1,a2,…,a670的“平均和”为2013,那么数列4,a1,a2,…,a670的“平均和”为(  )
A.2012B.2013C.2014D.2015

分析 通过数列a1,a2,…,a670的“平均和”为2013,可知S1+S2+…S670=2013×670,T671=4+$\frac{1}{671}$(S1+S2+…S670)代值即可

解答 解:∵数列a1,a2,…,a670的“平均和”为2013,
∴T670=$\frac{{S}_{1}+{S}_{2}+{S}_{3}+…+{S}_{670}}{670}$=2013,
∴S1+S2+…S670=2013×670,
∴4,a1,a2,…,a670的“平均和”
T671=$\frac{4+(4+{S}_{1})+(4+{S}_{2})+…+(4+{S}_{670})}{671}$
=4+$\frac{1}{671}$(S1+S2+…S670
=4+$\frac{2013×670}{671}$
=4+3×670
=2014,
故选:C.

点评 本题考查了数列新定义的求和问题的应用,解题时须认真分析,从题目中寻找解答问题的关键,从而得出答案,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,$AB=\sqrt{7}$,BC=3,∠C=60°,则AC=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在一次“对学生的数学成绩与物理成绩是否有关”的独立性检验的试验中,由2×2列联表算得K2的观测值k≈7.813,参照附表判断,在此次试验中,下列结论正确的是(  )   
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.在犯错误的概率不超过0.001的前提下,认为“数学成绩与物理成绩有关”
B.在犯错误的概率不超过0.01的前提下,认为“数学成绩与物理成绩有关”
C.有99%以上的把握认为“数学成绩与物理成绩无关”
D.有99.9%以上的把握认为“数学成绩与物理成绩有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{3}{2}{x^2}-2ax({a>0})$与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为(  )
A.$\frac{1}{{2{e^2}}}$B.$\frac{1}{2}{e^2}$C.$\frac{1}{e}$D.$-\frac{3}{{2{e^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{3}$D.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\frac{ln|x|}{x}cosx$(-π≤x≤π,且x≠0)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{(-1)}^n}}}{S_n}$,且{bn}的前n项和为Tn,求证:当n≥2时,$\frac{1}{3}≤|{T_n}|≤\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上周期为4的奇函数,当0<x<2时,f(x)=log2x,则f(2)+f($\frac{7}{2}$)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

同步练习册答案