【题目】已知(且m为常数).
(1)讨论函数的单调性;
(2)若对任意的,都存在,使得(其中e为自然对数的底数),求实数k的取值范围.
【答案】(1)当时,递增区间是,无递减区间,当时,递增区间是,递减区间是;(2).
【解析】
(1)求出,对分类讨论,求出的解,就可得出结论;
(2)设,所求的问题转化为,通过求导数法,求出取最大值时自变量与的关系,而对任意的都成立,将用表示,构造新函数,再求导求出新函数的最小值,即可求出结论.
(1)的定义域为,
,当时,恒成立,
当时,,
综上,当时,递增区间是,无递减区间,
当时,递增区间是,递减区间是;
(2)设,依题意,
,令,
恒成立,在是减函数,
即在是减函数,,
,存在唯一,使得,
当,
递增区间是,递减区间是,
取得极大值,也是最大值为,
,
对于对任意的恒成立,
其中,,
即,
对于对任意的恒成立,
设,
,
时,,
,当,
时,取得极小值,也是最小值,
即.
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
(1)算出第三组的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,且,数列为等差数列,且,.
(1)求数列和的通项公式;
(2)设,求数列的前项和;
(3)若对任意正整数,不等式均成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆上任意一点到其两个焦点,的距离之和等于,焦距为2c,圆,,是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形面积的最大值为.
(1)求椭圆C的方程;
(2)如图,若直线与圆O相切,且与椭圆相交于M,N两点,直线与平行且与椭圆相切于P(O,P两点位于的同侧),求直线,距离d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆上任意一点到其两个焦点,的距离之和等于,焦距为2c,圆,,是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形面积的最大值为.
(1)求椭圆C的方程;
(2)如图,若直线与圆O相切,且与椭圆相交于M,N两点,直线与平行且与椭圆相切于P(O,P两点位于的同侧),求直线,距离d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点到点的距离比它到直线距离小
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点作互相垂直的两条直线,它们与(Ⅰ)中轨迹分别交于点及点,且分别是线段的中点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有四个关于命题的判断,其中正确的是()
A.命题“,”是假命题
B.命题“若,则或”是真命题
C.命题“,”的否定是“,”
D.命题“在中,若,则是钝角三角形”是真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com