精英家教网 > 高中数学 > 题目详情
4.函数$y=sin({-3x+\frac{π}{4}})$,$x∈[{0,\frac{π}{4}}]$,的值域为$[{-1,\frac{{\sqrt{2}}}{2}}]$.

分析 化简函数y,求出$x∈[{0,\frac{π}{4}}]$时y的取值范围即可.

解答 解:函数y=sin(-3x+$\frac{π}{4}$)=-sin(3x-$\frac{π}{4}$),
当$x∈[{0,\frac{π}{4}}]$时,3x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{π}{2}$],
∴sin(3x-$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1];
-sin(3x-$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
即y的值域为[-1,$\frac{\sqrt{2}}{2}$].
故选:[-1,$\frac{\sqrt{2}}{2}$].

点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则f(x)=$\left\{\begin{array}{l}{{2}^{x}-x,(x>0)}\\{0,(x=0)}\\{-{2}^{-x}+x,(x<0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=lg(\frac{2a}{1+x}-1)(a>0)$.求证:函数f(x)为奇函数的充要条件是a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下四组函数:
①f(x)=cosx,g(x)=-sinx                 ②f(x)=sinx+cosx,g(x)=f′(x)
③f(x)=ax,g(x)=2•ax(其中a>0且a≠1)④f(x)=log2x,g(x)=log2(4x)
可以通过平移f(x)的图象得到g(x)图象的是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB=2BC,AC=AA1=$\sqrt{3}$BC,则直线AB1与平面BB1C1C所成的角的正切值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{39}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={sin^2}ωx+(2\sqrt{3}sinωx-cosωx)cosωx-λ$的图象关于直线x=π对称,其中ω,λ为常数,且ω∈($\frac{1}{2}$,1).
(1)求函数f (x)的最小正周期;
(2)若存在${x_0}∈[0,\frac{3π}{5}]$,使f(x0)=0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A、B、C是球O的球面上三个动点,球的半径为6,O为球心,若A、B、C、O不共面,则三棱锥O-ABC的体积取值范围为(  )
A.(0,12]B.(0,24]C.(0,36]D.(0,48]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题p:?x∈R,x2+(a-1)x+1>0,若命题?p为真命题,则实数a的取值范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一组数据共有7个数,其中10,2,5,2,4,2,还有一个数m不确定,但知道数m取自集合M={m|-20≤m≤20,m∈Z},则这组数的平均数、中位数、众数依次能构成等差数列的概率为$\frac{3}{41}$.

查看答案和解析>>

同步练习册答案