精英家教网 > 高中数学 > 题目详情
13.已知命题p:?x∈R,x2+(a-1)x+1>0,若命题?p为真命题,则实数a的取值范围是(-∞,-1]∪[3,+∞).

分析 根据含有量词的命题以及一元二次不等式成立的条件进行求解即可.

解答 解:∵命题p:?x∈R,x2+(a-1)x+1>0,
∴若?p是真命题,则?x∈R,x2+(a-1)x+1≤0成立,
则满足△=(a-1)2-4≥0,解得实数a的取值范围是(-∞,-1]∪[3,+∞),
故答案为:(-∞,-1]∪[3,+∞).

点评 本题主要考查含有量词的命题的否定的应用,转化为一元二次不等式成立的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,直线l:x=-2交x轴于点A,设p是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,-1),设H是E 上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$y=sin({-3x+\frac{π}{4}})$,$x∈[{0,\frac{π}{4}}]$,的值域为$[{-1,\frac{{\sqrt{2}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}是等差数列,其中a1=25,a4=16,
(1)求{an}的通项;
(2)数列{an}从哪一项开始小于0;
(3)求|a1|+|a2|+|a3|+…+|an|值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定点A(0,1),直线l1:y=-1交y轴于点B,记过点A且与直线l1相切的圆的圆心为点C.
(1)求动点C的轨迹E的方程;
(2)设倾斜角为α的直线l2过点A,交轨迹E于两点P、Q,交直线l1于点R.若$α∈[{\frac{π}{6},\frac{π}{4}}]$,求|PR|•|QR|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知钝角△ABC的三边a=k,b=k+1,c=k+2,求k的取值范围(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A=$\left\{{x|\frac{6}{6-x}∈N,x∈N}\right\}$,则集合A的子集的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知矩形ABCD的长AB=4,宽AD=3,将其沿对角线BD折起,得到四面体A-BCD,如图所示,

给出下列结论:
①四面体A-BCD体积的最大值为$\frac{72}{5}$;
②四面体A-BCD外接球的表面积恒为定值;
③若E、F分别为棱AC、BD的中点,则恒有EF⊥AC且EF⊥BD;
④当二面角A-BD-C为直二面角时,直线AB、CD所成角的余弦值为$\frac{16}{25}$;
⑤当二面角A-BD-C的大小为60°时,棱AC的长为$\frac{14}{5}$.
其中正确的结论的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y).
(1)求f(1),f(4),f(8)的值;
(2)证明:f($\frac{x}{y}$)=f(x)-f(y)
(3)函数f(x)当x1,x2∈(0,+∞)时都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$>0.若f(1)+f(x-2)≤3,求x的取值范围.

查看答案和解析>>

同步练习册答案