2£®ÒÑÖª¾ØÐÎABCDµÄ³¤AB=4£¬¿íAD=3£¬½«ÆäÑØ¶Ô½ÇÏßBDÕÛÆð£¬µÃµ½ËÄÃæÌåA-BCD£¬ÈçͼËùʾ£¬

¸ø³öÏÂÁнáÂÛ£º
¢ÙËÄÃæÌåA-BCDÌå»ýµÄ×î´óֵΪ$\frac{72}{5}$£»
¢ÚËÄÃæÌåA-BCDÍâ½ÓÇòµÄ±íÃæ»ýºãΪ¶¨Öµ£»
¢ÛÈôE¡¢F·Ö±ðΪÀâAC¡¢BDµÄÖе㣬ÔòºãÓÐEF¡ÍACÇÒEF¡ÍBD£»
¢Üµ±¶þÃæ½ÇA-BD-CΪֱ¶þÃæ½Çʱ£¬Ö±ÏßAB¡¢CDËù³É½ÇµÄÓàÏÒֵΪ$\frac{16}{25}$£»
¢Ýµ±¶þÃæ½ÇA-BD-CµÄ´óСΪ60¡ãʱ£¬ÀâACµÄ³¤Îª$\frac{14}{5}$£®
ÆäÖÐÕýÈ·µÄ½áÂ۵ĸöÊýÓУ¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

·ÖÎö ÔÚ¢ÙÖУ¬ËÄÃæÌåA-BCDÌå»ýµÄ×î´óֵΪ$\frac{24}{5}$£»ÔÚ¢ÚÖУ¬ÈýÀâ×¶A-BCDÍâ½ÓÇòµÄ±íÃæ»ýΪ25¦Ð£»ÔÚ¢ÛÖУ¬Á¬½ÓAF£¬CF£¬µÃµ½EF¡ÍAC£¬Á¬½ÓDE£¬BE£¬µÃ¡÷ACD¡Õ¡÷ACB£¬µÃDE=BE£¬´Ó¶øEF¡ÍBD£»ÔÚ¢ÜÖУ¬ÒÔCΪԭµãCB£¬CDËùÔÚÖ±Ïß·Ö±ðΪx£¬yÖᣬÓÉÏòÁ¿µÄÊýÁ¿»ý¿ÉÒԵõ½Ö±ÏßAB¡¢CDËù³É½ÇµÄÓàÏÒֵΪ$\frac{16}{25}$£»ÔÚ¢ÝÖУ¬µ±¶þÃæ½ÇA-BD-CµÄ´óСΪ60¡ãʱ£¬AC=$\frac{\sqrt{193}}{5}$£®

½â´ð ½â£º¢ÙËÄÃæÌåABCDÌå»ý×î´óֵΪÁ½¸öÃæ»¥Ïà´¹Ö±£¬
ËÄÃæÌåA-BCDÌå»ýµÄ×î´óֵΪ$\frac{1}{3}¡Á\frac{1}{2}¡Á3¡Á4¡Á\frac{12}{5}$=$\frac{24}{5}$£¬¹Ê¢Ù²»ÕýÈ·£»
¢ÚÈýÀâ×¶A-BCDÍâ½ÓÇòµÄ°ë¾¶Îª$\frac{5}{2}$£¬
ËùÒÔÈýÀâ×¶A-BCDÍâ½ÓÇòµÄ±íÃæ»ýΪ4$¦Ð¡Á\frac{25}{4}=25¦Ð$£¬¹Ê¢ÚÕýÈ·£»
¢ÛÈôE¡¢F·Ö±ðΪÀâAC¡¢BDµÄÖе㣬Á¬½ÓAF£¬CFÔòAF=CF£¬
¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÃµ½EF¡ÍAC£»
Á¬½ÓDE£¬BE£¬µÃ¡÷ACD¡Õ¡÷ACB£¬
µÃµ½DE=BE£¬ËùÒÔEF¡ÍBD£¬¹Ê¢ÛÕýÈ·£»
¢Üµ±¶þÃæ½ÇA-BD-CΪֱ¶þÃæ½Çʱ£¬ÒÔCΪԭµãCB£¬CDËùÔÚÖ±Ïß·Ö±ðΪx£¬yÖᣬ
ÔòÓÉÏòÁ¿µÄÊýÁ¿»ý¿ÉÒԵõ½Ö±ÏßAB¡¢CDËù³É½ÇµÄÓàÏÒֵΪ$\frac{16}{25}$£¬¹Ê¢ÜÕýÈ·£®
¢ÝÔÚÖ±½ÇÈý½ÇÐÎABDÖУ¬AB=4£¬AD=3£¬BD=5£¬
×÷AE¡ÍBD£¬CF¡ÍBD£¬ÔòAE=CF=$\frac{12}{5}$£¬DE=BF=$\frac{9}{5}$£¬
ͬÀíÖ±½ÇÈý½ÇÐÎABCÖУ¬ÔòEF=BD-DE-BF=$\frac{7}{5}$£¬
ÔÚÆ½ÃæABDÄÚ£¬¹ýF×÷FH¡ÎAE£¬ÇÒFH=AE£¬Á¬½ÓAH£¬µÃËıßÐÎAEFHΪ¾ØÐΣ¬
ÔòAH=EF=$\frac{7}{5}$£¬AH¡ÎEF£¬
FH¡ÍDB£¬ÓÖCF¡ÍDB£¬
¼´ÓСÏCFHΪ¶þÃæ½ÇC-BD-AµÄÆ½Ãæ½Ç£¬ÇÒΪ60¡ã£¬
¼´CH=CF=$\frac{12}{5}$£¬
ÓÉBD¡ÍÆ½ÃæCFH£¬µÃµ½BD¡ÍCH£¬¼´ÓÐAH¡ÍCH£¬
ÔòAC=$\sqrt{A{H}^{2}+C{H}^{2}}$=$\frac{\sqrt{193}}{5}$£¬¹Ê¢Ý´íÎó£»
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¿Õ¼ä˼άÄÜÁ¦µÄÅàÑø£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÔÏÂËÄ×麯Êý£º
¢Ùf£¨x£©=cosx£¬g£¨x£©=-sinx                 ¢Úf£¨x£©=sinx+cosx£¬g£¨x£©=f¡ä£¨x£©
¢Ûf£¨x£©=ax£¬g£¨x£©=2•ax£¨ÆäÖÐa£¾0ÇÒa¡Ù1£©¢Üf£¨x£©=log2x£¬g£¨x£©=log2£¨4x£©
¿ÉÒÔͨ¹ýÆ½ÒÆf£¨x£©µÄͼÏóµÃµ½g£¨x£©Í¼ÏóµÄÊǢ٢ڢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬x2+£¨a-1£©x+1£¾0£¬ÈôÃüÌâ?pÎªÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-1]¡È[3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÖ±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+3t\\ y=3-4t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÖ±ÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$-\frac{4}{3}$C£®$\frac{3}{4}$D£®$-\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®·Ö½âÒòʽa3-3a+2=£¨¡¡¡¡£©
A£®£¨a-1£©2£¨a+2£©B£®£¨a+1£©2£¨a+2£©C£®£¨a-1£©£¨a+1£©£¨a-2£©D£®£¨a-1£©2£¨a-2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬µÈÑüÌÝÐÎABCDµÄµ×±ßABÔÚxÖáÉÏ£¬¶¥µãAÓë¶¥µãB¹ØÓÚÔ­µãO¶Ô³Æ£¬ÇÒµ×±ßABºÍCDµÄ³¤·Ö±ðΪ6ºÍ$2\sqrt{6}$£¬¸ßΪ3£®
£¨¢ñ£©ÇóµÈÑüÌÝÐÎABCDµÄÍâ½ÓÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôµãNµÄ×ø±êΪ£¨5£¬2£©£¬µãMÔÚÔ²EÉÏÔ˶¯£¬ÇóÏß¶ÎMNµÄÖеãPµÄ¹ì¼£·½³Ì£¬²¢Ö¸³öÆä¹ì¼££®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ò»×éÊý¾Ý¹²ÓÐ7¸öÊý£¬ÆäÖÐ10£¬2£¬5£¬2£¬4£¬2£¬»¹ÓÐÒ»¸öÊým²»È·¶¨£¬µ«ÖªµÀÊýmÈ¡×Ô¼¯ºÏM={m|-20¡Üm¡Ü20£¬m¡ÊZ}£¬ÔòÕâ×éÊýµÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊýÒÀ´ÎÄܹ¹³ÉµÈ²îÊýÁеĸÅÂÊΪ$\frac{3}{41}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®${¡Ò}_{0}^{2}$£¨x+ex£©dx=e2+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÈôP£¨x£¬y£©Âú×ã$\left\{\begin{array}{l}x-4y+4¡Ü0\\ 2x+y-10¡Ü0\\ 5x-2y+2¡Ý0\end{array}\right.$£¬Ôòµ±xyÈ¡µÃ×î´óֵʱ£¬µãPµÄ×ø±êÊÇ£¨$\frac{5}{2}$£¬5£©£¬xyÈ¡µÃµÄ×î´óֵΪ$\frac{25}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸