精英家教网 > 高中数学 > 题目详情
17.分解因式a3-3a+2=(  )
A.(a-1)2(a+2)B.(a+1)2(a+2)C.(a-1)(a+1)(a-2)D.(a-1)2(a-2)

分析 直接因式分解,即可得出结论.

解答 解:原式=a3-3a+2=a3-a-2a+2=a(a2-1)-2(a-1)
=a(a-1)(a+1)-2(a-1)=(a-1)(a2+a-2)=(a-1)2(a+2),
故选A.

点评 本题考查因式分解,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.则三棱锥P-ABC体积的最大值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定点A(0,1),直线l1:y=-1交y轴于点B,记过点A且与直线l1相切的圆的圆心为点C.
(1)求动点C的轨迹E的方程;
(2)设倾斜角为α的直线l2过点A,交轨迹E于两点P、Q,交直线l1于点R.若$α∈[{\frac{π}{6},\frac{π}{4}}]$,求|PR|•|QR|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A=$\left\{{x|\frac{6}{6-x}∈N,x∈N}\right\}$,则集合A的子集的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知回归直线$\hat y=bx+a$,其中a=4,样本点的中心为(1,6),则回归直线的方程是(  )
A.$\hat y=2x+4$B.$\hat y=x+4$C.$\hat y=-2x+4$D.$\hat y=-x+4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知矩形ABCD的长AB=4,宽AD=3,将其沿对角线BD折起,得到四面体A-BCD,如图所示,

给出下列结论:
①四面体A-BCD体积的最大值为$\frac{72}{5}$;
②四面体A-BCD外接球的表面积恒为定值;
③若E、F分别为棱AC、BD的中点,则恒有EF⊥AC且EF⊥BD;
④当二面角A-BD-C为直二面角时,直线AB、CD所成角的余弦值为$\frac{16}{25}$;
⑤当二面角A-BD-C的大小为60°时,棱AC的长为$\frac{14}{5}$.
其中正确的结论的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈N|(x+3)(1-x)≤0},B={x|-4<x<4},则A∩B=(  )
A.{x|-3≤x≤1}B.{x|-4<x≤-3}∪{x|1≤x<4}C.{1,2,3}D.{x|-3,-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设m=20152016,n=20162015,则m,n的大小关系为m>n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(x)的单调递减区间为[$\frac{8k}{3}$+1,$\frac{8k}{3}$+$\frac{7}{3}$],k∈Z. 

查看答案和解析>>

同步练习册答案