精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(x)的单调递减区间为[$\frac{8k}{3}$+1,$\frac{8k}{3}$+$\frac{7}{3}$],k∈Z. 

分析 根据函数f(x)的图象求出周期T与ω、φ的值,写出f(x)的解析式,再求出它的单调递减区间.

解答 解:根据函数f(x)=sin(ωx+φ)的图象知,
函数的最大值为A=1,
周期为$\frac{3}{4}$T=3-1=2,
∴T=$\frac{8}{3}$,
即$\frac{2π}{ω}$=$\frac{8}{3}$,解得ω=$\frac{3π}{4}$,
∴f(x)=sin($\frac{3π}{4}$x+φ),
再根据函数的图象以及五点法作图,得$\frac{3π}{4}$+φ=$\frac{π}{2}$,
解得φ=-$\frac{π}{4}$,
∴f(x)=sin($\frac{3π}{4}$x-$\frac{π}{4}$);
令2kπ+$\frac{π}{2}$≤$\frac{3π}{4}$x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,
解得$\frac{8k}{3}$+1≤x≤$\frac{8k}{3}$+$\frac{7}{3}$,k∈Z,
∴f(x)的单调递减区间为:[$\frac{8k}{3}$+1,$\frac{8k}{3}$+$\frac{7}{3}$],k∈Z.
故答案为:[$\frac{8k}{3}$+1,$\frac{8k}{3}$+$\frac{7}{3}$],k∈Z.

点评 本题考查了正弦函数的图象与性质的应用问题,求出函数的解析式是解题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.分解因式a3-3a+2=(  )
A.(a-1)2(a+2)B.(a+1)2(a+2)C.(a-1)(a+1)(a-2)D.(a-1)2(a-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列命题:
①$\vec a$•$\vec 0$=$\vec 0$;
②0•$\vec a$=0;
③$\vec 0$-$\overrightarrow{AB}$=$\overrightarrow{BA}$;
④|$\vec a$•$\vec b$|=|$\vec a$||$\vec b$|;
⑤若$\vec a$≠$\vec 0$,则对任一非零$\vec b$有$\vec a$•$\vec b$≠0;
⑥$\vec a$•$\vec b$=0,则$\vec a$与$\vec b$中至少有一个为$\vec 0$;
⑦对任意向量$\vec a$,$\vec b$,$\vec c$都有($\vec a$•$\vec b$)•$\vec c$=$\vec a$•($\vec b$•$\vec c$);
⑧$\vec a$与$\vec b$是两个单位向量,则$\vec a$2=$\vec b$2
其中正确的是③⑧(把正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足an+2+an=2an+1(n∈N*),且a5=$\frac{π}{2}$,若函数f(x)=sin2x+2cos2$\frac{x}{2}$,记yn=f(an),则数列{yn}的前9项和为(  )
A.0B.-9C.9D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={x|{x2+2x-3>0},B={x|$\frac{x-2}{x+2}$≤0},则(∁UA)∩B=(  )
A.(-2,+∞)B.(-2,1]C.[-1,2]D.(-3,-2)∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,则当xy取得最大值时,点P的坐标是($\frac{5}{2}$,5),xy取得的最大值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求函数f(x)=4${\;}^{x-\frac{1}{2}}}$-3•2x+5在区间[-2,2]上的最大值,并求函数f(x)取得最大值时的x的取值?
(2)若函数y=a2x+2ax-1(a>0,a≠1)在区间[-2,2]上的最大值为14,求实数a的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,点M到F(1,0)的距离比它到y轴的距离大1.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)若在y轴右侧,曲线C上存在两点关于直线x-2y-m=0对称,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C1的直角坐标方程;
(2)曲线C2的极坐标方程为θ=$\frac{π}{6}$(ρ∈R),求C1与C2的公共点的极坐标.

查看答案和解析>>

同步练习册答案