| A. | 0 | B. | -9 | C. | 9 | D. | 1 |
分析 由数列{an}满足an+2-an+1=an+1-an,n∈N*,可得数列{an}是等差数列.由a5=$\frac{π}{2}$,可得a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.由f(x)=sin2x+2cos2$\frac{x}{2}$,可得f(x)=sin2x+cosx+1,可得f(a1)+f(a9)=sin2a1+cosa1+1+sin2a9+cosa9+1=2,同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2,进而得出.
解答 解:∵数列{an}满足an+2-an+1=an+1-an,n∈N*,
∴数列{an}是等差数列,
∵a5=$\frac{π}{2}$,∴a1+a9=a2+a8=a3+a7=a4+a6=2a5=π
∵f(x)=sin2x+2cos2$\frac{x}{2}$,
∴f(x)=sin2x+cosx+1,
∴f(a1)+f(a9)=sin2a1+cosa1+1+sin2a9+cosa9+1=2,
同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2,
∵f(a5)=1,
∴数列{yn}的前9项和为9.
故选:C.
点评 本题考查了等差数列的通项公式与求和公式及其性质、倍角公式与和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 个 | B. | 2 个 | C. | 3 个 | D. | 4 个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≤2} | B. | {x|x>0} | C. | {x|x<0或x≥2} | D. | {x|0<x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{b}$|=2 | B. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | C. | $\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$ | D. | ($\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$)⊥$\overrightarrow{BC}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com