精英家教网 > 高中数学 > 题目详情
5.袋中共有15个除颜色外完全相同的球,其中10个白球5个红球,从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为$\frac{10}{21}$.

分析 从袋中任取2个球,基本事件总数n=${C}_{15}^{2}$,所取的2个球中恰有1个白球,1个红球包含的基本事件个数m=${C}_{10}^{1}{C}_{5}^{1}=50$,由此能求出所取的2个球中恰有1个白球,1个红球的概率.

解答 解:袋中共有15个除颜色外完全相同的球,其中10个白球5个红球,
从袋中任取2个球,基本事件总数n=${C}_{15}^{2}$=105,
所取的2个球中恰有1个白球,1个红球包含的基本事件个数m=${C}_{10}^{1}{C}_{5}^{1}=50$,
∴所取的2个球中恰有1个白球,1个红球的概率为p=$\frac{m}{n}=\frac{50}{105}$=$\frac{10}{21}$.
故答案为:$\frac{10}{21}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.直线${l_1}:x+\sqrt{3}y+1=0$和直线l2垂直,则直线l2的倾斜角的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.表格是一个2×2列联表:
y1y2总计
x1a2170
x25c30
总计bd100
则b-d=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a1=2,a17=66
(1)求数列{an}的通项公式;
(2)求a2012
(3)2012是否为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a}{x}$+lnx.
(Ⅰ)若函数f(x)在区间[1,e]上的最小值是$\frac{3}{2}$,求a的值;
(Ⅱ)当a=1时,设F(x)=f(x)+1+$\frac{lnx}{x}$,求证:当x>1时,$\frac{F(x)}{{2{e^{x-1}}}}$>$\frac{e+1}{{x{e^x}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{1}{3}$x3-2x2+3x-m
(1)求f(x)的极值
(2)当m取何值时,函数f(x)有三个不同零点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个物体的运动方程是s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是(  )
A.3米/秒B.4米/秒C.5米/秒D.2米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)用分析法证明:$\sqrt{5}$+2$\sqrt{2}$<$\sqrt{6}$+$\sqrt{7}$;
(2)已知a>0,b>0,求证:$\frac{{b}^{2}}{a}$+$\frac{{a}^{2}}{b}$≥a+b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知指数函数y=2x的图象与y轴交于点A,对数函数y=lnx的图象与x轴交于点B,点P在直线AB上移动,点M(0,-3),则|MP|的最小值为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案