精英家教网 > 高中数学 > 题目详情

(2010•内江二模)如图,是一个由三根细铁杆PA、PB、PC组成的支架,三根杆的两两夹角都是60°,一个半径为1的球放在支架内,使杆与球相切,则球心到点P的距离是( )

A. B. C.2 D.

A

【解析】

试题分析:根据小球与三根杆分别切于E、F、G点,在三根杆上取相等的长度,令PA=PB=PC,根据三根杆的两两夹角都是60度,可推断出△PAC、PBC、PAB均为等边三角形,且全等.可知四面体P﹣ABC中每条棱均相等.延长PO至与三角形交于N点,判断出NB:PB=1:单独取三角形PNB分析,进而根据OP:OE=PB:NB求得半径OE,进而求得OP,即球心道点P的距离.

【解析】
如图:将小球放进支架中,小球与三根杆分别切于E、F、G点,在三根杆上取相等的长度,令PA=PB=PC,

∵三根杆的两两夹角都是60度,

∴△PAC、PBC、PAB均为等边三角形,且全等.可知四面体P﹣ABC中每条棱均相等.

延长PO至与三角形交于N点.

NB:PB=1:

单独取三角形PNB分析,易得△OEP与∽△PNB.

∴OP:OE=PB:NB=:1,OE为半径1,推出OP为

即球心到点P的距离是

故选A

练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年贵州省高三模拟考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图,直三棱柱中,分别是的中点.

(1)证明:平面

(2)设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修4-1 2.3柱面与平面的截面练习卷(解析版) 题型:填空题

如图,一个底面半径为R的圆柱被与其底面所成角为θ(0°<θ<90°)的平面所截,截面是一个椭圆,

当θ为30°时,这个椭圆的离心率为 .

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修4-1 2.2直线与球、平面与球位置关系(解析版) 题型:填空题

已知棱长等于2的正四面体的四个顶点在同一个球面上,则球的半径长为 ,球的表面积为 .

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修4-1 2.2直线与球、平面与球位置关系(解析版) 题型:选择题

三个半径为R的球互相外切,且每个球都同时与另两个半径为r的球外切.如果这两个半径为r的球也互相外切,则R与r的关系是( )

A.R=r B.R=2r C.R=3r D.R=6r

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-3 2.2超几何分布练习卷(解析版) 题型:解答题

某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,

(1)请列出X的分布列;

(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-3 2.2超几何分布练习卷(解析版) 题型:解答题

甲与乙两人掷硬币,甲用一枚硬币掷3次,记下国徽面朝上的次数为m;乙用一枚硬币掷2次,记下国徽面朝上的次数为n.

(1)算国徽面朝上不同次数的概率并填入下表:

(2)现规定:若m>n,则甲胜;若n≥m,则乙胜.你认为这种规定合理吗?为什么?

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-2 2.5简单复合函数求导法则练习卷(解析版) 题型:?????

函数f(x)=sin2x的导数f′(x)=( )

A.2sinx B.2sin2x C.2cosx D.sin2x

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-1 2.5夹角的计算练习卷(解析版) 题型:?????

在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案