精英家教网 > 高中数学 > 题目详情

【题目】某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )

①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;

②用简单随机抽样的方法从新生中选出100人;

③西部地区学生小刘被选中的概率为

④中部地区学生小张被选中的概率为

A. ①④ B. ①③ C. ②④ D. ②③

【答案】B

【解析】分析:由题意逐一考查所给的说法是否正确即可.

详解:逐一考查所给的说法:

①由分层抽样的概念可知,取东部地区学生48人、

中部地区学生32人、

西部地区学生20题中的说法正确

②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;

③西部地区学生小刘被选中的概率为,题中的说法正确

④中部地区学生小张被选中的概率为,题中的说法错误;

综上可得,正确的说法是①③.

本题选择B选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数),上的最大值为.

(1)求实数的值;

(2)判断函数内的极值点个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人站成两排队列,前排人,后排.

1)一共有多少种站法;

2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).

根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差 ()具有线性相关关系.

(1)求绿豆种子出芽数 (颗)关于温差 ()的回归方程

(2)假如4月1日至7日的日温差的平均值为11,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求ff1)),ff1));

2)画出fx)的图象;

3)若fx=a,问a为何值时,方程没有根?有一个根?两个根?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与直线的距离为,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)在(1)的条件下,抛物线的焦点与点关于轴上某点对称,且抛物线与椭圆在第四象限交于点,过点作抛物线的切线,求该切线方程并求该直线与两坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为0,其前项和为,且成等比数列.

1)求数列的通项公式及的最小值;

2)若数列是等差数列,且,求的值.

查看答案和解析>>

同步练习册答案