精英家教网 > 高中数学 > 题目详情
19.给出下列命题:
(1)函数y=sin|x|不是周期函数;
(2)函数y=sin($\frac{5π}{2}$+x)是偶函数;
(3)函数y=tanx在定义域内是增函数;
(4)函数y=tan(2x+$\frac{π}{6}$)图象的一个对称中心为($\frac{π}{6}$,0).
其中正确命题的序号是(1)(2)(4)(注:把你认为正确命题的序号全填上)

分析 由条件利用三角函数周期性、奇偶性、单调性以及它的图象的对称性,得出结论.

解答 解:(1)根据函数y=sin|x|为偶函数,它的图象关于原点对称,结合它的图象特征,可得它不是周期函数,故(1)正确;
(2)由于函数y=sin($\frac{5π}{2}$+x)=cosx,故他为是偶函数,故(2)正确;
(3)对于函数y=tanx,由于tan$\frac{π}{3}$=tan$\frac{4π}{3}$,故他在定义域内不是增函数,故(3)错误;
(4)令x=$\frac{π}{6}$,可得2x+$\frac{π}{6}$=$\frac{π}{2}$,tan(2x+$\frac{π}{6}$)无意义,故函数y=tan(2x+$\frac{π}{6}$)图象的一个对称中心为($\frac{π}{6}$,0),故(4)正确,
故答案为:(1)(2)(4).

点评 本题主要考查三角函数周期性、奇偶性、单调性以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),且过点($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$).过F作直线l与椭圆C交于不同的两点A,B,设$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],T(2,0)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求|$\overrightarrow{TA}$+$\overrightarrow{TB}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其离心率与双曲线$\frac{x^2}{3}-{y^2}$=1的离心率互为倒数,而直线x+y=$\sqrt{3}$过椭圆C的一个焦点.
(I)求椭圆C的方程;
(Ⅱ)如图,以椭圆C的左顶点T为圆心作圆T,设圆T与椭圆C交于两点M,N,求$\overrightarrow{{T}{M}}•\overrightarrow{{T}{N}}$的最小值,并求出此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,且满足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-5x+4≤0},集合B={x|2x2-9x+k≤0}.若B⊆A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=exsin(2x+1),则f′(-$\frac{1}{2}$)=2${e}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{3}$-θ)=$\frac{1}{2}$,则cos($\frac{π}{6}$+θ)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若输入的t∈[-3,2],则输出的S属于(  )
A.[-3,9)B.[-3,9]C.[3,5]D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=1,若M是PB的中点,求棱锥M-ABC的体积.

查看答案和解析>>

同步练习册答案