精英家教网 > 高中数学 > 题目详情
6.一个袋中有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1 个白球的概率是$\frac{7}{9}$.
(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的数学期望E(X).

分析 (1)设黑球的个数为x,则白球的个数为10-x,利用对立事件的概率值列方程求出x的值;
(2)由题意知随机变量X的可能取值,计算对应的概率,写出X的分布列,计算数学期望值.

解答 解:(1)设黑球的个数为x,则白球的个数为10-x,
记两个都是黑球得的事件为A,则至少有一个白球的事件与事件A为对立事件;
所以p(A)=1-$\frac{7}{9}$=$\frac{{C}_{x}^{2}}{{C}_{10}^{2}}$,
化简得x2-x-20=0,
解得x=5或x=-4(不合题意,舍去),
所以白球的个数为5;
(2)由题意,随机变量X的取值可能为:0,1,2,3,
P(X=0)=$\frac{{C}_{5}^{0}{•C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{5}^{1}{•C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{5}^{2}{•C}_{5}^{1}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{5}^{3}{•C}_{5}^{0}}{{C}_{10}^{3}}$=$\frac{1}{12}$;
所以X的分布列为

X0123
P$\frac{1}{12}$$\frac{5}{12}$$\frac{5}{12}$$\frac{1}{12}$
数学期望为E(X)=0×$\frac{1}{12}$+1×$\frac{5}{12}$+2×$\frac{5}{12}$+3×$\frac{1}{12}$=$\frac{3}{2}$.

点评 本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列与数学期望问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若函数h(x)=2x-$\frac{k}{x}$在[1,+∞)上是增函数,则实数k的取值范围是(  )
A.[-2,+∞)B.[2,+∞)C.(-∞,-2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(3-2x-x2)(2x-1)6的展开式中,含x3项的系数为(  )
A.600B.360C.-588D.-360

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线y=$\frac{x}{x+2}$在x=2处的切线方程为x-8y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示.
(1)求函数f(x)的表达式
(2)若方程f(x)=a在$({0,\frac{5π}{3}})$上有两个不同的实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|0≤x≤3},B={x|x<2},则A∪B=(  )
A.(-∞,2)B.(-∞,3]C.[0,2)D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx-xcosx(x≥0).
(1)求函数f(x)的图象在$(\frac{π}{2},1)$处的切线方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求实数a的取值范围;
(3)设m=${∫}_{0}^{\frac{π}{2}}$f(x)dx,$g(x)=\frac{6m}{{(4-π){x^2}}}f(x)$,证明:$[1+g(\frac{1}{3})][1+g(\frac{1}{3^2})]…[1+g(\frac{1}{3^n})]<\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.演绎推理是(  )
A.特殊到一般的推理B.特殊到特殊的推理
C.一般到特殊的推理D.一般到一般的推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图为60辆汽车通过某一段公路时的时速频率分布直方图,则时速在[60,70)的汽车大约有24辆.

查看答案和解析>>

同步练习册答案