精英家教网 > 高中数学 > 题目详情
13.一个直三棱柱的每条棱长都是4$\sqrt{3}$,且每个顶点都在球O的球面上,则球O的表面积为(  )
A.84πB.96πC.112πD.144π

分析 设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,设球O的半径为R,利用勾股定理求出R2,由此能求出球O的表面积.

解答 解:∵一个直三棱柱的每条棱长都是4$\sqrt{3}$,且每个顶点都在球O的球面上,
∴设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,
设球O的半径为R,
则R2=($\frac{4\sqrt{3}}{2}$)2+($\frac{2}{3}×\frac{\sqrt{3}}{2}×4\sqrt{3}$)2=28,
∴球O的表面积S=4πR2=112π.
故选:C.

点评 本题球的表面积的求法,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想、方程思想、整体思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若sinα+cosα=tan390°,则sin2α等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥的三条侧棱两两垂直,其长分别为$\sqrt{3},\sqrt{2},1$,则该三棱锥的外接球的表面积(  )
A.24πB.18πC.10πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点P(1,0)与抛物线y=x2有且只有一个公共点的直线共有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正方体ABCD-A1B1C1D1的棱长为1,动点P在正方体ABCD-A1B1C1D1表面上运动,且$PA=r({0<r<\sqrt{3}})$.记点P的轨迹的长度为f(r).求关于r的方程f(r)=k的解的个数的所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A、B、C所对的边长分别为a、b、c,$C=\frac{π}{3}$,若$\overrightarrow{OD}=a\overrightarrow{OE}+b\overrightarrow{OF}$,且D、E、F三点共线(该直线不经过O点),则△ABC周长的最小值是(  )
A.$\frac{1}{2}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是(  )
A.(6,+∞)B.[6,+∞)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线方程为$y=\frac{1}{4}{x^2}$,则其准线方程为y=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{2}$,1),且与直线$\sqrt{2}$x+2y-4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围.

查看答案和解析>>

同步练习册答案