| A. | ω的最小值为$\frac{1}{3}$ | B. | ω的最小值为$\frac{1}{2}$ | C. | ω的最大值为$\frac{11}{6}$ | D. | ω的最大值为$\frac{13}{6}$ |
分析 由题意可得ωx0+$\frac{π}{3}$∈($\frac{π}{3}$,ωπ+$\frac{π}{3}$),且 $\frac{π}{3}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,求得ω的范围,从而得出结论.
解答 解:∵x0∈(0,π),∴ωx0+$\frac{π}{3}$∈($\frac{π}{3}$,ωπ+$\frac{π}{3}$).
由存在唯一一个x0∈(0,π),使得f(x0)=1,可得sin(ω•x0+$\frac{π}{3}$)=$\frac{1}{2}$,
∴$\frac{π}{3}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,求得 0<ω≤$\frac{11}{6}$,
∴ω的最大值为 $\frac{11}{6}$,
故选:C.
点评 本题主要考查正弦函数的图象特征,判断 $\frac{π}{3}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,是解题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com