分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥所得的组合体,求出三棱锥的外接球半径,代入球表面积公式,可得答案.
解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥柱切去一个三棱锥所得的组合体,
其外接球,即以俯视图为底面的三棱锥柱的外接球,
由已知得:底面外接圆的半径r=$\frac{1}{2}\sqrt{{3}^{2}+{4}^{2}}$=$\frac{5}{2}$,
球心到底面的距离d=$\frac{5}{2}$,
故球的半径R=$\frac{5}{2}$$\sqrt{2}$,
故球的表面积S=50π,
故答案为:50π
点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 产品 | A | B | C |
| 数量 | 800 | 800 | 1200 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω的最小值为$\frac{1}{3}$ | B. | ω的最小值为$\frac{1}{2}$ | C. | ω的最大值为$\frac{11}{6}$ | D. | ω的最大值为$\frac{13}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 1级 | 2级 | 3级 | 4级 |
| 人数 | 200 | 500 | 200 | 100 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com