精英家教网 > 高中数学 > 题目详情
13.已知椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{16}$=1,其长轴两端点与双曲线两焦点重合,而双曲线的两个顶点又是椭圆的焦点.求此双曲线的标准方程.

分析 求出椭圆的顶点坐标,焦点坐标,即可得到双曲线焦点坐标与顶点坐标,然后求解双曲线方程.

解答 解:∵椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{16}$=1的焦点为(0,±3),y轴上的两个顶点为(0,±4),
∴双曲线中a=3,c=4.
∴b2=c2-a2=7
∴双曲线的方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{7}=1$.
故答案为:$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{7}=1$.

点评 解决圆锥曲线的方程问题一定要注意椭圆中三个参数的关系为:a2=b2+c2;双曲线中三个参数的关系为c2=b2+a2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,那么$\overrightarrow{b}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值为(  )
A.-8B.-6C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C的焦点M,其准线与x轴的交点为K,过点K(-1,0)的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK内切圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$与曲线$\frac{x^2}{{{a^2}-m}}+\frac{y^2}{{{b^2}-m}}=1$有相同的(  )
A.长轴长B.短轴长C.焦距D.离心率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+2≥0}\end{array}\right.$确定的平面区域记为Ω1,不等式组$\left\{\begin{array}{l}{x+y-1≤0}\\{x+y+2≥0}\end{array}\right.$确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)唯一的零点同时在(1,1.5),(1.25,1.5),(1.375,1.5),(1.4375,1.5)内,则该零点(精确度为0.01)的一个近似值约为(  )
A.1.02B.1.27C.1.39D.1.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示程序框图,输出的结果是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=ax(a>0),过动点P(m,0)且斜率为1的直线与该抛物线交于不同的两点A,B,|AB|≤a.
(1)求m的取值范围;
(2)若线段AB的垂直平分线交x轴于点Q,求△QAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的外接球的表面积为50π.

查看答案和解析>>

同步练习册答案