精英家教网 > 高中数学 > 题目详情
1.在极坐标系中,已知点P(1,$\frac{π}{6}$)和Q(2,$\frac{π}{2}$),则|PQ|=$\sqrt{3}$.

分析 求出P,Q的直角坐标,利用两点的距离公式求|PQ|.

解答 解:∵点P(1,$\frac{π}{6}$)和Q(2,$\frac{π}{2}$),
∴点P($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)和Q(0,2),
∴|PQ|=$\sqrt{(0-\frac{\sqrt{3}}{2})^{2}+(2-\frac{1}{2})^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查极坐标方程与直角坐标方程的互化,以及两点的距离公式,用点的极坐标刻画点的位置,求出点P、Q的直角坐标,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PB⊥面ABCD,BA=BD=$\sqrt{2}$,AD=2,E,F分别是棱AD,PC的中点.
(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若抛物线y=x2-6x+5与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且CA⊥CB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,边长为2的正△ABC顶点A在平面α上,B,C在平面α的同侧,M为BC的中点.若△ABC在平面α上的投影是以A为直角顶点的△A1B1C1,则M到平面α的距离的取值范围是[$\sqrt{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(Ⅲ)求证:ln2•ln3…lnn>$\frac{{2}^{n}}{n(n+1)}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正三棱锥O-ABC的各边长为2,求该三棱锥的体积及表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若P,S分别变为:p:(x-m)2>3(x-m),s:x2+3x-4<0,若x∈p是x∈s的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2015)+f(2016)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的周长为c,它的内切圆半径为r,则△ABC的面积为$\frac{1}{2}$cr.运用类比推理可知,若三棱椎D-ABC的表面积为6$\sqrt{3}$,内切球的半径为$\frac{1}{2}$,则三棱锥D-ABC的体积为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案