精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,已知a1<$\frac{3}{2}$,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2,则当a2016-4a1取得最小值时,a1的值为$\frac{5}{4}$.

分析 把已知数列递推式变形,可得$\frac{1}{{a}_{n}}=\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1}$,代入$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2,整理得到${a}_{2016}=\frac{{a}_{1}-2}{2{a}_{1}-3}$,把a2016-4a1化为含有a1的函数式,然后利用基本不等式求得最值,同时求得a1的值.

解答 解:由an+1=an2-an+1,得an+1-1=an(an-1),可得an>1,
则$\frac{1}{{a}_{n}}=\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1}$.
∴2=$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=($\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1}$)+($\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1}$)+…+($\frac{1}{{a}_{2015}-1}-\frac{1}{{a}_{2016}-1}$)
=($\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2016}-1}$).
化为${a}_{2016}=\frac{{a}_{1}-2}{2{a}_{1}-3}$,
∴a2016-4a1=$\frac{{a}_{1}-2}{2{a}_{1}-3}-4{a}_{1}=\frac{{a}_{1}-2-8{{a}_{1}}^{2}+12{a}_{1}}{2{a}_{1}-3}$
=$\frac{-8{{a}_{1}}^{2}+13{a}_{1}-2}{2{a}_{1}-3}$=$-2(2{a}_{1}-3)-\frac{1}{2(2{a}_{1}-3)}-\frac{11}{2}$.
∵a1<$\frac{3}{2}$,∴2a1-3<0,
则a2016-4a1=$-2(2{a}_{1}-3)-\frac{1}{2(2{a}_{1}-3)}-\frac{11}{2}$

$≥2\sqrt{-2(2{a}_{1}-3)•(-\frac{1}{2(2{a}_{1}-3)})}-\frac{11}{2}$=$2-\frac{11}{2}=-\frac{7}{2}$.
当且仅当$(2{a}_{1}-3)^{2}=\frac{1}{4}$,即$2{a}_{1}-3=-\frac{1}{2}$,也就是${a}_{1}=\frac{5}{4}$时取等号.
故a2016-4a1取得最小值时,a1的值为$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.

点评 本题考查数列递推式,训练了累加法求数列的通项公式,考查了数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知复数z1满足z1(2+i)=5i(i为虚数单位),若复数z2满足z1+z2是实数,z1•z2是纯虚数,求复数z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=2x+m与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有两个公共点,则实数m的取值范围是(-2$\sqrt{10}$,2$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=|-x2+2x+3|在区间[0,4]上的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在公差不为0的等差数列{an}中,a2+a4=ap+aq,记$\frac{1}{p}$+$\frac{9}{q}$的最小值为m,若数列{bn}满足b1=$\frac{2}{11}$m,则2bn+1-bn•bn+1=1,b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{{100}^{2}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过原点的一条直线与双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)交于A,B两点,P为双曲线上不同于A,B的一个动点,且直线PA、PB的斜率之积为3,若抛物线C2:y2=2px(p>0)的焦点到双曲线C1的渐近线的距离为2,则该抛物线C2的标准方程为(  )
A.y2=$\frac{16\sqrt{3}}{3}$xB.y2=16xC.y2=$\frac{8\sqrt{3}}{3}$xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),设函数f(x)=-x2+2x+4,g(x)=x+2(x∈R),函数F(f(x),g(x))的最大值与零点之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B是边长为2的正三角形,A1D=2,BC=1.
(1)证明:MD∥平面ABC;
(2)证明:BC⊥平面ABB1A1
(3)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinα=$\frac{1}{\sqrt{5}}$,sinβ=$\frac{1}{\sqrt{10}}$,且α、β∈(0,$\frac{π}{2}$),则α+β是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案