分析 (1)利用作差法,作差并配方即可证明,
(2)由基本不等式可得到2$\sqrt{{x}_{1}{x}_{2}}$≤x1+x2=1,同时加上1即可得到1≤x1+x2+2$\sqrt{{x}_{1}{x}_{2}}$≤2,配方即可证明.
解答 解:(1)∵a≥0,b≥0,
∴$\frac{a+b}{2}$-$\sqrt{ab}$=$\frac{a+b-2\sqrt{ab}}{2}$=$\frac{(\sqrt{a}-\sqrt{b})^{2}}{2}$≥0,当且仅当a=b时取等号,
∴$\frac{a+b}{2}$≥$\sqrt{ab}$,
(2)由基本不等式知0≤2$\sqrt{{x}_{1}{x}_{2}}$≤x1+x2=1,
于是有1≤x1+x2+2$\sqrt{{x}_{1}{x}_{2}}$≤2,
即1≤($\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$)2≤2,
∴1≤$\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$≤$\sqrt{2}$.
点评 本题考查了作差法比较大小以及基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰直角三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{a}}{|\overrightarrow{b}{|}^{2}}$-$\overrightarrow{b}$ | B. | $\frac{2(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{b}}{|\overrightarrow{b}{|}^{2}}$-$\overrightarrow{a}$ | C. | $\frac{(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow{b}$ | D. | $\frac{2(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow{b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com