精英家教网 > 高中数学 > 题目详情
(满分14分)设函数
(1)设曲线在点(1,)处的切线与x轴平行.
① 求的最值;
② 若数列满足为自然对数的底数),
求证: .
(2)设方程的实根为
求证:对任意,存在使成立.
解:(1)①的最小值为。无最大值;②见解析;(2)见解析.
本试题主要是考查了导数在研究函数中的运用。求解函数的单调性和导数几何意义的运用,以及不等式的证明的综合问题
(1)第一问利用已知条件得打参数m的值,然后求解导数。判定其单调性,求解函数的单调区间,从而得到最值和放缩法得到不等式的证明
(2)第二问中运用函数与方程思想,来分析方程的解的问题。并构造函数来证明不等式 成立。
解:(1)由已知

。则在(0,1)上是减函数,在上是增函数。的最小值为。无最大值..............................4'
(当且仅当时取到等号)




。又

故不等式成立。...........9'
(2)设上递增。

所以方程上有唯一根而不等式

不妨设



设集合
即存在成立。
那么不等式也成立
故对任意使得成立...14'
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(常数).
(Ⅰ)求的单调区间;(5分)
(Ⅱ)设如果对于的图象上两点,存在,使得的图象在处的切线,求证:.(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题8分)设
(1)当时,求在区间上的最值;
(2)若上存在单调递增区间,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数的图像有三个不同的交点,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数 是自然对数的底数,).
(1)当时,求的单调区间;
(2)若在区间上是增函数,求实数的取值范围;
(3)证明对一切恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(I)当时,求函数的图象在点A(0,)处的切线方程;
(II)讨论函数的单调性;
(Ⅲ)是否存在实数,使时恒成立?若存在,求出实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在区间上不是单调函数,试求的取值范围;
(2)直接写出(不需要给出演算步骤)函数的单调递增区间;
(3)如果存在,使函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)证明函数f ( x )的图象关于轴对称;
(Ⅱ)判断上的单调性;
(Ⅲ)当x∈[1,2]时函数f (x )的最大值为,求此时a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 设函数.
(Ⅰ)当时,求函数的单调区间和极大值点;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

同步练习册答案