精英家教网 > 高中数学 > 题目详情
正四棱锥S-ABCD的侧棱长为,底面边长为ESA的中点,则异面直线BESC所成的角为(  ).
A.30°B.45°C.60°D.90°
C
AC中点为O,则OESC,连结BO,则∠BEO(或其补角)即为异面直线BESC所成的角,EOSCBOBD,在△SAB中,cos A,∴BE.△BEO中,cos∠BEO,∴∠BEO=60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

平行四边形中,,且,以BD为折线,把△ABD折起,,连接AC.

(1)求证:;
(2)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,∥AE,,分别为的中点.

(1)求异面直线所成角的大小;
(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.

(Ⅰ)求证:CE//平面ABF;
(Ⅱ)求证:BE⊥AF;
(Ⅲ)在直线BC上是否存在点M,使二面角E-MD-A的大小为?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β为60°,若平面α内有一点A到平面β的距离为
3
,那么A在平面β内的射影B到平面α的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在等腰中,,分别是上的点,,的中点,将沿折起,得到如图2所示的四棱锥,若平面,则与平面所成角的正弦值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为2的正方体ABCD -A1B1C1D1中,点O是底面ABCD的中心,点E,F分别是CC1,AD的中点,则异面直线OE与FD1所成角的余弦值为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,的中点,则异面直线所成的角的余弦值是(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△ABC中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB的大小(  ).
A.变大 B.变小C.不变D.有时变大有时变小

查看答案和解析>>

同步练习册答案