已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;
(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.
(1);(2);(3)详见解析.
解析试题分析:(1)作出解题所需图形,对照图形和双曲线的定义不难解决此问题;(2)按照数量积的定义即需求模和夹角,这都可以通过解析几何的工具性知识在形式上得到表示,然后通过设而不求和整体思想得以解决;(3)通过分析可将等式的证明转化为垂直关系的判定,仍然运用设而不求和整体思想来解决,注意要对直线的斜率是否存在分情况讨论,这样解题才严谨.
试题解析:(1)设、的坐标分别为、
因为点在双曲线上,所以,即,所以
在中,,,所以 2分
由双曲线的定义可知:
故双曲线的方程为: 4分
(2)由条件可知:两条渐近线分别为, 5分
设双曲线上的点,设的倾斜角为,则
则点到两条渐近线的距离分别为, 7分
因为在双曲线上,所以
又,从而
所以 10分
(3)由题意,即证:.
设,切线的方程为:,且 11分
①当时,将切线的方程代入双曲线中,化简得:
所以:
又 13分
所以 15分
②当时,易知上述结论也成立. 所以 &n
科目:高中数学 来源: 题型:解答题
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长.与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点.
(Ⅰ)求、的方程;
(Ⅱ)求证:;
(Ⅲ)记的面积分别为,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线方程为,过点作直线与抛物线交于两点,,过分别作抛物线的切线,两切线的交点为.
(1)求的值;
(2)求点的纵坐标;
(3)求△面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
已知抛物线y2=4x的焦点为F,准线为l.过点F作倾斜角为60°的直线与抛物线在第一象限的交点为A,过A作l的垂线,垂足为A1,则△AA1F的面积是 ▲
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com