精英家教网 > 高中数学 > 题目详情

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

.

解析试题分析:解题思路:根据条件设出椭圆的标准方程,再代点求系数即可.规律总结:求圆锥曲线的标准方程通常用待定系数法,即先根据条件设出合适的标准方程,再根据题意得到关于系数的方程或方程组,解之积得.
试题解析:因为椭圆的焦点在x轴上,所以设它的标准方程为
由椭圆的定义知
所以
又因为
所以
所以椭圆的标准方程为.
考点:椭圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知椭圆C:=1(a>b≥1)的离心率e=,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.
(1)求椭圆C的方程。
(2)设P为椭圆上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:过点,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,(为坐标原点).

(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点上移动时,恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若不论为何值,直线曲线总有公共点,则的取值范围是_____

查看答案和解析>>

同步练习册答案