如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的短轴长.
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
.![]()
(Ⅰ)求
、
的方程;
(Ⅱ)求证:
;
(Ⅲ)记
的面积分别为
,若
,求
的取值范围.
(Ⅰ)
,
;(Ⅱ)详见解析;(Ⅲ)
.
解析试题分析:(Ⅰ)曲线方程与性质的互求遵循:定型、定位、定量,这里关键是定量;(Ⅱ)解析几何中垂直关系的证明,主要是用向量的数量积为零来处理,而从斜率处理就涉及到斜率的存在与否不是很好,而数量积的计算常用的坐标形式,这样就和解析几何的思想解析法挂上了钩;(Ⅲ)首先要设变量,用变量来表示
,进而表示
,这一转化过程必须用解析法完成,注意运算能力的培养,接下来运用函数或不等式的知识来求范围即可.
试题解析:(Ⅰ)
又
,解得![]()
,
.
(Ⅱ)依题意有
,设直线
,
则
,有![]()
![]()
![]()
.
(Ⅲ)设直线
;![]()
,解得
或![]()
,同理可得![]()
.
解得
或![]()
,
,同理可得![]()
![]()
,即
.
考点:1.圆锥曲线的方程和性质;2.直线与曲线的综合.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0),直线l:y=kx+m(k≠0,m≠0),直线l交椭圆C与P,Q两点.
(Ⅰ)若k=1,椭圆C经过点(
,1),直线l经过椭圆C的焦点和顶点,求椭圆方程;
(Ⅱ)若k=
,b=1,且kOP,k,kOQ成等比数列,求三角形OPQ面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
、
为双曲线
:![]()
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
,圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆Γ:
(a>b>0)经过D(2,0),E(1,
)两点.
(1)求椭圆Γ的方程;
(2)若直线
与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且
.
①证明:![]()
②求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com