精英家教网 > 高中数学 > 题目详情

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长.轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点.

(Ⅰ)求的方程;
(Ⅱ)求证:
(Ⅲ)记的面积分别为,若,求的取值范围.

(Ⅰ),;(Ⅱ)详见解析;(Ⅲ).

解析试题分析:(Ⅰ)曲线方程与性质的互求遵循:定型、定位、定量,这里关键是定量;(Ⅱ)解析几何中垂直关系的证明,主要是用向量的数量积为零来处理,而从斜率处理就涉及到斜率的存在与否不是很好,而数量积的计算常用的坐标形式,这样就和解析几何的思想解析法挂上了钩;(Ⅲ)首先要设变量,用变量来表示,进而表示,这一转化过程必须用解析法完成,注意运算能力的培养,接下来运用函数或不等式的知识来求范围即可.
试题解析:(Ⅰ)  又,解得.
(Ⅱ)依题意有,设直线
,有

.
(Ⅲ)设直线
,解得,同理可得
.
解得,同理可得

,即.
考点:1.圆锥曲线的方程和性质;2.直线与曲线的综合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0),直线l:y=kx+m(k≠0,m≠0),直线l交椭圆C与P,Q两点.
(Ⅰ)若k=1,椭圆C经过点(,1),直线l经过椭圆C的焦点和顶点,求椭圆方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比数列,求三角形OPQ面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆和动圆,直线:分别有唯一的公共点
(Ⅰ)求的取值范围;
(Ⅱ)求的最大值,并求此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是抛物线上一个动点,则点到点的距离与点到直线的距离和的最小值是                          。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若不论为何值,直线曲线总有公共点,则的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知F1F2分别为双曲线的左、右焦点,若双曲线左支上存在一点P使得 =8a,则双曲线的离心率的取值范围是               

查看答案和解析>>

同步练习册答案