精英家教网 > 高中数学 > 题目详情
定义一种运算“*”,对于正整数n,满足以下运算性质:
(1)1*2=1;
(2)n*(n+1)=(n-1)*n+2(n≥2).
求Sn=1*2+2*3+…+n*(n+1)的值.
考点:数列的求和,进行简单的合情推理
专题:等差数列与等比数列
分析:设an=n*(n+1),则an=an-1+2,n≥2,a1=1.因此数列{an}是等差数列,首项为1,公差为2,再利用等差数列的通项公式及其前n项和公式即可得出.
解答: 解:设an=n*(n+1),
则an=an-1+2,n≥2,a1=1.
∴数列{an}是等差数列,首项为1,公差为2,
∴an=1+2(n-1)=2n-1,
∴Sn=1*2+2*3+…+n*(n+1)=a1+a2+…+an=
n(1+2n-1)
2
=n2
点评:本题考查了等差数列的通项公式及其前n项和公式、新定义,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个身高1.8m的人,以1.2m/s的速度离开路灯,路灯高4.2m.
(1)求身影的长度y与人距路灯的距离x之间的关系;
(2)解释身影长的变化率与人步行速度的关系;
(3)求x=3m时,身影长的变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线的中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、2
B、
3
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线的斜率为
1
2
,则该双曲线的离心率为(  )
A、
3
B、
5
C、2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下表为某地近几年机动车辆数与交通事故数的统计资料,请判断交通事故数与机动车辆数是否有线性相关关系.
机动车辆数x/千台95110112120129135150180
交通事故数y/千件0.91.41.62.02.11.91.82.1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sinα
1+cot2α
-
cosα
1+tan2α
=-1
,试判断α是第几象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z满足(1+i)z=1-i,其中i为虚数单位,则z=(  )
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若P={y|y=|x|},Q={x|-
2
≤x≤
2
},则P∩Q=(  )
A、(0,
2
B、{(1,1),(-1,-1)}
C、[0,
2
]
D、(-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

汽艇在静水中的航行速度是12km/h,当它在流速为3km/h的河水中向着与河岸垂直的方向航行时,合速度的大小和方向怎样?

查看答案和解析>>

同步练习册答案