精英家教网 > 高中数学 > 题目详情
12.设a为大于1的常数,函数f(x)=$\left\{\begin{array}{l}{log_a}x,x>0\\{a^x},x≤0\end{array}$,若关于x的方程f2(x)-bf(x)=0恰有三个不同的实数解,则实数b的取值范围是(  )
A.0<b≤1B.0<b<1C.0≤b≤1D.b>1

分析 由题意可得f(x)=0或f(x)=b,从而可得f(x)=b在(-∞,0]上必须有且只有一个解,从而解得.

解答 解:f2(x)-bf(x)=f(x)(f(x)-b)=0,
∴f(x)=0或f(x)=b,
由f(x)=0解得,x=1;
若x>0,则由f(x)=b解得,
x=ab
又∵关于x的方程f2(x)-bf(x)=0恰有三个不同的实数解,
∴f(x)=b在(-∞,0]上必须有且只有一个解,
又∵x∈(-∞,0]时,ax∈(0,1];
故0<b≤1;
故选A.

点评 本题考查了函数的零点与方程的根的关系应用及分段函数的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,x∈R)则“f(x)是奇函数”是“φ=$\frac{π}{2}$”的必要不充分条件条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x、y满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y的取值范围是[-1,20].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:2sin(x-π)sin($\frac{π}{2}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.变量x,y 满足$\left\{\begin{array}{l}y≥-1\\ x-y≥2\\ 3x+y≤14\end{array}\right.$,若使z=ax+y取得最大值的最优解有无穷多个,实数a的集合是(  )
A.{-3,0 }B.{ 3,-1}C.{ 0,1 }D.{-3,0,1 }

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等腰梯形ABCD中,E,F分别是AB,CD的中点,AB=4,CD=2,AD=BC=$\sqrt{2}$,现将梯形AEFD沿EF折起,并记平面AEFD与平面BEFC所成二面角的平面角为θ,BE中点为G.
(1)当θ=60°时,求证:AG⊥平面AEFC;
(2)当三棱锥D-CFG的体积取得最大值时,求DG与平面AEFD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从0到9这10个数字中任意取3个数字组成一个没有重复数字的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若动圆与圆x2+y2+2x=0外切,同时与圆x2+y2-2x-8=0内切.
(1)求动圆圆心的轨迹E的方程;
(2)过点(1,0)且斜率为k(k≠0)的直线l交曲线E于M,N两点,弦MN的垂直平分线与x轴相交于点D,设弦MN的中点为P,试求$\frac{|DP|}{|MN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有(  )
A.63种B.31种C.8种D.7种

查看答案和解析>>

同步练习册答案