精英家教网 > 高中数学 > 题目详情
8.函数f(x)=$\left\{\begin{array}{l}{1+{(\frac{1}{2})}^{x},(x>0)}\\{2{x}^{2}+3,(x≤0)}\end{array}\right.$的值域为(1,2)∪[3,+∞).

分析 分段求f(x)的取值范围,从而解得.

解答 解:当x>0时,
1<1+$(\frac{1}{2})^{x}$<2,
当x≤0时,2x2+3≥3,
故函数f(x)=$\left\{\begin{array}{l}{1+{(\frac{1}{2})}^{x},(x>0)}\\{2{x}^{2}+3,(x≤0)}\end{array}\right.$的值域为(1,2)∪[3,+∞),
故答案为:(1,2)∪[3,+∞).

点评 本题考查了分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.小明身高比小强高,小强身高比小丽高,那么小明身高比小丽高,上述描述符号不等式的哪个性质(  )
A.如果a>b,那么b<a;如果b<a,那么a>b
B.如果a>b,b>c,那么a>c
C.如果a>b,那么a+c>b+c
D.如果a>b,c>0,那么ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)上一点Q(2,t)到抛物线C的焦点F的距离为$\frac{5}{2}$.
(1)求抛物线C的方程;
(2)若P(x0,y0)(x0>2)是抛物线C上的动点,点M,N在y轴上,圆(x-1)2+y2=1内切于△PMN,求△PMN的面积的最小值,并求出此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{a}^{2x}+{a}^{-2x}-1}{{a}^{x}+{a}^{-x}}$(a>1).
(1)设t=ax+a-x,将f(x)用t表示为g(t);
(2)判断y=f(x)在(-∞,0]与[0,+∞)上的单调性;
(3)当x∈[-1,1]时,f(x)∈[$\frac{1}{2}$,2],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=ex的图象与直线y=-x的交点的个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{a}$=($\frac{1}{\sqrt{3}}$,sinα),$\overrightarrow{b}$=(2cosα,$\frac{3}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角α的值为(  )
A.$\frac{π}{12}$或$\frac{5π}{12}$B.$\frac{π}{6}$或$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则边BC上的中线长为(  )
A.$\frac{\sqrt{21}}{2}$B.$\frac{\sqrt{26}}{2}$C.$\frac{\sqrt{29}}{2}$D.$\frac{\sqrt{23}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)为奇函数,且该函数有三个零点,则三个零点之和等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设随机变量X的概率分布列为
X123
P$\frac{1}{6}$$\frac{1}{3}$$\frac{1}{2}$
则E(X+2)的值为(  )
A.$\frac{11}{3}$B.9C.$\frac{13}{3}$D.$\frac{7}{3}$

查看答案和解析>>

同步练习册答案