精英家教网 > 高中数学 > 题目详情
3.已知数列{an}为等差数列,a1=3且(a3-1)是(a2-1)与a4的等比中项.
(1)求an
(2)若数列{an}的前n项和为Sn,bn=$\frac{{a}_{n}}{{S}_{n}-n}$,Tn=-b1+b2+b3+…+(-1)nbn,求Tn

分析 (1)设等差数列{an}的公差为d,a1=3且(a3-1)是(a2-1)与a4的等比中项.可得(3+2d-1)2=(3+3d)(3+d-1),整理为:d2-d-2=0,解得d并且验证即可得出.
(2)Sn=$\frac{n(3+2n+1)}{2}$=n2+2n,bn=$\frac{{a}_{n}}{{S}_{n}-n}$=$\frac{2n+1}{{n}^{2}+n}$=$\frac{1}{n}+\frac{1}{n+1}$,对n分类讨论即可得出.

解答 解:(1)设等差数列{an}的公差为d,a1=3且(a3-1)是(a2-1)与a4的等比中项.
∴(3+2d-1)2=(3+3d)(3+d-1),整理为:d2-d-2=0,解得d=2,或-1(舍去).
∴an=2n+1.
(2)Sn=$\frac{n(3+2n+1)}{2}$=n2+2n
bn=$\frac{{a}_{n}}{{S}_{n}-n}$=$\frac{2n+1}{{n}^{2}+n}$=$\frac{1}{n}+\frac{1}{n+1}$,
当n为偶数时,Tn=-b1+b2+b3+…+(-1)nbn=-$(1+\frac{1}{2})$+$(\frac{1}{2}+\frac{1}{3})$-…+$(\frac{1}{n}+\frac{1}{n+1})$=-1+$\frac{1}{n+1}$=$\frac{-n}{n+1}$.
当n为奇数时,Tn=-b1+b2+b3+…+(-1)nbn=-$(1+\frac{1}{2})$+$(\frac{1}{2}+\frac{1}{3})$-…-$(\frac{1}{n}+\frac{1}{n+1})$=-1-$\frac{1}{n+1}$=$\frac{-n-2}{n+1}$.
∴Tn=$\left\{\begin{array}{l}{-\frac{n}{n+1},n为偶数}\\{-\frac{n+2}{n+1},n为奇数}\end{array}\right.$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是[$\frac{17}{6},\frac{257}{60}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB和曲线DE分别是顶点在路面A、E的抛物线的一部分,曲线BCD是圆弧,已知它们在接点B、D处的切线相同,若桥的最高点C到水平面的距离H=6米,圆弧的弓高h=1米,圆弧所对的弦长BD=10米.

(1)求弧$\widehat{BCD}$所在圆的半径;
(2)求桥底AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,-2)$,若$|\overrightarrow a|=2\sqrt{5},\overrightarrow a=λ\overrightarrow b(λ<0)$,则m-n=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a>2,函数f(x)=$\left\{\begin{array}{l}{log_a}({x+1})+x-2,x>0\\ x+4-{(\frac{1}{a})^{x+1}}\begin{array}{l}{\;}{x≤0}\end{array}\end{array}$若函数f(x)有两个零点x1,x2,则(  )
A.?a>2,x1-x2=0B.?a>2,x1-x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a1、a2∈R,且$\frac{1}{2+sin{α}_{1}}$+$\frac{1}{2+sin(2{α}_{2})}$=2,则|10π-α12|的最小值等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.4a5.25.9
y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+2.3,则a的值为4.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个空间几何体的三视图及部分数据如下图所示,则该几何体的体积是(  )
A.$\frac{{32+8\sqrt{3}}}{3}$B.16C.12D.$32+8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=alnx+x2-b(x-1)-1,若对$?x∈[\frac{1}{e},+∞)$,f(x)≥0恒成立,则实数a的取值范围是(  )
A.$a≤{e}+\frac{1}{e}-2$B.a<2C.$\frac{2}{e}≤a<2$D.$a≤\frac{2}{e}$

查看答案和解析>>

同步练习册答案