精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a=({1,3}),\overrightarrow b=({m,2}),\overrightarrow c=({3,4})$,且$({\overrightarrow a-3\overrightarrow b})⊥\overrightarrow c$
(1)求实数m的值;
(2)求向量$\overrightarrow a,\overrightarrow b$的夹角θ.

分析 (1)根据向量坐标公式先求出向量坐标,根据向量数量积的坐标公式进行求解即可.
(2)根据向量数量积的应用求出向量长度,进行求解即可.

解答 解:(1)∵$\overrightarrow a=({1,3}),\overrightarrow b=({m,2}),\overrightarrow c=({3,4})$,
∴$\overrightarrow{a}$-3$\overrightarrow{b}$=(1.3)-(3m,6)=(1-3m,-3),
∵$({\overrightarrow a-3\overrightarrow b})⊥\overrightarrow c$,
∴($\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{c}$=3(1-3m)+(-3)×4=-9m-9=0,
得m=-1.
(2)由(1)知,$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),
则$\overrightarrow{a}$•$\overrightarrow{b}$=5,|$\overrightarrow{a}$|=$\sqrt{10}$,|$\overrightarrow{b}$|=$\sqrt{5}$,
则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{5}{\sqrt{10}×\sqrt{5}}$=$\frac{\sqrt{2}}{2}$,
∵θ∈(0,π),
∴θ=$\frac{π}{4}$.

点评 本题主要考查向量数量积的应用,根据向量垂直与向量数量积的关系以及向量夹角与向量数量积的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,-cosx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$.
(1)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求函数f(x)的最值及对应x的值;
(2)若不等式[f(x)-m]2<1在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某工厂有A,B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件,耗时1h,每生产一件乙产品使用4个B配件,耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h,若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为22万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a-i与2+bi互为共轭复数,那么a+b等于(  )
A.3B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.随机变量X~N(1,4),若p(x≥2)=0.2,则p(0≤x≤1)为(  )
A.0.2B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三棱锥P-ABC中,D是BC的中点,△PAB为等边三角形,△ABC为等腰直角三角形,AB=AC=4,且二面角P-AB-D的余弦值为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求证:平面ABC⊥平面PBC;
(Ⅱ)若点M是线段AP上一动点,点N为线段AB的四等分点(靠近B点),求直线NM与平面PAD所成角的余弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)={log_a}({x^3}-ax)(a>0且a≠1)在区间(-\frac{1}{3},0)$内单调递增,则实数a的取值范围是(  )
A.$[\frac{2}{3},1)$B.$[\frac{1}{3},1)$C.$[\frac{1}{3},1)∪(1,3]$D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z在复平面内对应的点在射线y=2x(x≥0)上,且$|z|=\sqrt{5}$,则复数z的虚部为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为(  )
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

同步练习册答案