精英家教网 > 高中数学 > 题目详情
已知点在抛物线上,直线,且)与抛物线,相交于两点,直线分别交直线于点.
(1)求的值;
(2)若,求直线的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
(1);(2);(3)存在,且两个定点坐标为.

试题分析:(1)将点代入抛物线的方程即可求出的值;(2)解法1是先设点的坐标分别为,将直线的方程与抛物线的方程联立求出的坐标,并求出的直线方程,与直线的方程联立求出的坐标,利用两点间的距离公式列等式求出的值,从而求出直线的方程;解法2是设直线的方程为,点的坐标为,分别将直线的方程与抛物线和直线的方程求出点的坐标,然后设直线的方程为,利用同样的方法求出点的坐标,利用点都在直线上,结合两点连线的斜率等于值以及点在直线得到之间的等量关系,然后再利用两点间的距离公式列等式求出的值,从而求出直线的方程;(3)解法1是求出线段的中点的坐标,然后写出以为直径的圆的方程,结合韦达定理进行化简,根据方程的结构特点求出定点的坐标;解法2是设为以为直径的圆上的一点,由得到以为直径的圆的方程,然后圆的方程的结构特点求出定点的坐标.
试题解析:(1)在抛物线上,.
第(2)、(3)问提供以下两种解法:
解法1:(2)由(1)得抛物线的方程为.
设点的坐标分别为,依题意,
消去
解得.

直线的斜率
故直线的方程为.
,得的坐标为.
同理可得点的坐标为.
.
.
,得
解得,或
直线的方程为,或.
(3)设线段的中点坐标为

.

以线段为直径的圆的方程为.
展开得.
,得,解得.
以线段为直径的圆恒过两个定点.
解法2:(2)由(1)得抛物线的方程为.
设直线的方程为,点的坐标为
解得
的坐标为.
,消去,得
,解得.
.
的坐标为.
同理,设直线的方程为
则点的坐标为,点的坐标为.
在直线上,
.
.                5分
,得
化简得.

.
.


解得.
直线的方程为,或.
(3)设点是以线段为直径的圆上任意一点,


整理得,.
,得,解得.
以线段为直径的圆恒过两个定点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定点与分别在轴、轴上的动点满足:,动点满足
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点);
(i)试判断直线与以为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.

(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于AB两点,点C在抛物线的准线上,且BCx轴,证明:直线AC经过原点O.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在抛物线上,且点到直线的距离为,则点 的个数为 (  )   
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线(k>0)与抛物线相交于AB两点,的焦点,若,则k的值为()
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到准线的距离是( )
A.2B.4 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,抛物线上纵坐标为的点到焦点的距离
,则焦点到准线的距离为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案