精英家教网 > 高中数学 > 题目详情
20.函数y=sin(x-$\frac{π}{6}$)是周期为2π的函数,其单调减区间为[2kπ+$\frac{2π}{3}$,2kπ+$\frac{5π}{3}$],k∈Z.

分析 由条件利用正弦函数的周期性和单调性,得出结论.

解答 解:函数y=sin(x-$\frac{π}{6}$)的周期为2π;
令2kπ+$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得2kπ+$\frac{2π}{3}$≤x≤2kπ+$\frac{5π}{3}$,
故函数的减区间为[2kπ+$\frac{2π}{3}$,2kπ+$\frac{5π}{3}$],k∈Z,
故答案为:2π;[2kπ+$\frac{2π}{3}$,2kπ+$\frac{5π}{3}$],k∈Z.

点评 本题主要考查正弦函数的周期性和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数 f(x)=x2+4|x-a|(x∈R).
(1)当a=$\frac{1}{2}$,求函数f(x)的单调区间;
(2)对任意的x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤k成立,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列四个结论,其中正确的是(  )
A.若$\frac{1}{a}>\frac{1}{b}$,则a<b
B.“a=3“是“直线l1:a2x+3y-1=0与直线l2:x-3y+2=0垂直”的充要条件
C.在区间[0,1]上随机取一个数x,sin$\frac{π}{2}x$的值介于0到$\frac{1}{2}$之间的概率是$\frac{1}{3}$
D.对于命题P:?x∈R使得x2+x+1<0,则?P:?x∈R均有x2+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,以原点O为极点,以x轴为正半轴为极轴建立极坐标系.
(1)求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离;
(2)椭圆C的参数方程为$\left\{\begin{array}{l}{x=acosθ}\\{y=bsinθ}\end{array}\right.$(φ为参数,a>b>0),直线l与圆O的极坐标方程分别为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m为非零常数)与ρ=b,若直线l经过椭圆C的焦点,且与圆O相切,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某一几何体的三视图如图所示,按照给出的尺寸(单位:cm),则这个几何体的体积为(  )
A.8cm3B.$\frac{40}{3}$cm3C.12cm3D.$\frac{50}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{1}{x}$,求函数f(x)在定义域内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x3+x,x∈R,当-$\frac{π}{2}$<θ≤0时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列叙述正确的是(  )
A.互斥事件一定不是对立事件,但是对立事件一定是互斥事件
B.若随机事件A发生的概率为P(A),则0<P(A)<1
C.频率是稳定的,概率是随机的
D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙比甲抽到有奖奖券的可能性小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.满足条件|g(x1)-g(x2)|≤4|x1-x2|的函数g(x)形成了一个集合M,其中x1,x2∈R,并且x12≤1,x22≤1,求函数y=f(x)=x2+3x-2(x∈R)与集合M的关系.

查看答案和解析>>

同步练习册答案