精英家教网 > 高中数学 > 题目详情
(本题满分16分)
如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。
(I)设,试将此人按上述路线从A到C所需时间T表示为的函数;并求自变量 取值范围;
II)当为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的函数,且对任意实数,恒有,且的最大值为1,则满足的解集为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的定义域为D,若满足下面两个条件,则称为闭函数.①在D内是单调函数;②存在,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是
A.k<lB.C.k >-1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设mÎN,若函数存在整数零点,则m的取值集合为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分1 3分)
如图①,一条宽为l km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.
(Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现
决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.
(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE="θ" (0≤θ≤),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根均大于1的什么条件?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

把函数的图象向左平移一个单位;再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象;此时图象恰与重合,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)已知函数对任意实数均有,当时,是正比例函数,当时,是二次函数,且在取最小值
(1)证明:
(2)求出的表达式;并讨论的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知                     

查看答案和解析>>

同步练习册答案