精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
cosx+sinx+4的值域为M,在M中取三个不相等的数y1、y2、y3,使之构成公比为q的等比数列,则公比q的取值范围为 (  )
分析:利用三角函数的和角公式将f(x)化为f(x)=
3
cosx+sinx+4=2sin(x+
π
3
)+4
,求出其值域M,设出等比数列的三项,列出不等式求出公比的范围,
解答:解:f(x)=
3
cosx+sinx+4=2sin(x+
π
3
)+4

所以M=[2,6],
所以2≤y1≤6
2≤y1q2≤6
解得
3
3
≤q≤
3

故选C.
点评:解决三角函数的性质问题,一个先利用三角函数的公式化简三角函数为一个角一个函数的形式,然后再求性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案