精英家教网 > 高中数学 > 题目详情
4.已知A(1,1),B(2,2).动点P(2a,a),t=PA2+PB2,当实数a为何值时t取得最小值?并求当t取最小值时点P的坐标.

分析 利用距离公式得出t关于a的函数,根据二次函数的性质得出t取最小值时对应的a的值,从而得出P点坐标.

解答 解:PA2=(2a-1)2+(a-1)2=5a2-6a+2,PB2=(2a-2)2+(a-2)2=5a2-12a+4,
∴t=PA2+PB2=10a2-18a+6,
∴当a=$-\frac{-18}{20}$=$\frac{9}{10}$时,t取得最小值.
此时P点坐标为($\frac{9}{5}$,$\frac{9}{10}$).

点评 本题考查了距离公式,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-2,2$\sqrt{3}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=|2x-1|+|x-2a|,若?x∈[1,2],f(x)≤4,则实a的取值范围是(  )
A.($\frac{1}{4}$,$\frac{3}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[1,$\frac{3}{2}$]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\frac{x}{x+2}$,观察:
f1(x)=f(x)=$\frac{x}{x+2}$,f2(x)=f(f1(x))=$\frac{x}{3x+4}$,
f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$,…
根据以上事实,由归纳推理可得:
当n∈N+,且n≥2时,f7(7)=f(f6(x))=$\frac{x}{127x+128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点(1,0)到直线x+y+1=0的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①小于90°的角是第一象限角;
②将y=sin2x的图象上所有点向右平移$\frac{π}{3}$个单位长度可得到y=sin(2x-$\frac{π}{3}$)的图象;
③若α、β是第一象限角,且α>β,则sinα>sinβ;
④函数f(x)=3sin(2x-$\frac{π}{3}$)关于直线x=$\frac{11π}{12}$对称
⑤函数y=|tanx|的周期和对称轴方程分别为π,x=$\frac{kπ}{2}$(k∈Z)
其中正确的命题的序号是④⑤.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,与点(3,-$\frac{π}{3}$)关于极轴所在直线对称的点的极坐标是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.目前,在“互联网+”和“大数据”浪潮的推动下,在线教育平台如雨后春笋般蓬勃发展,与此同时好多学生家长和相关专家对在线教学也产生了质疑,主要原因就是在线上教学,学生是否能认真听讲,在这种情况下,我市教育主管部门在我市各中小学采用分层抽样的方式抽出15周岁以下和15周岁以上各200人进行调查研究,其中15周岁以下的能认真听讲的150人,不能做到认真听讲的50人,15周岁以上的170人能认真听讲,不能做到认真听讲的30人,根据以上数据完成下列各题:
(1)完成下列2×2列联表
不认真听讲能认真听讲总计
15周岁以下
15周岁以上
总计
(2)请说明是否有97.5%以上的把握认为能否认真听见与年龄有关?
(3)现用分层抽样的方法,从15周岁以下的人种抽取8人,在这8人中任取两人进行座谈,求抽到的人中至少有一人能认真听讲的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)

P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=sin2x的图象向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,则下列说法正确的是(  )
A.g(x)在(0,$\frac{π}{4}$)上单调递增,且为奇函数
B.g(x)的最大值为1,其图象关于直线x=$\frac{π}{2}$对称
C.g(x)在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,且为偶函数
D.g(x)的周期为π,其图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

同步练习册答案